Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang-g Seola-a
Xem chi tiết
Zurich Nonstop Gamer
Xem chi tiết
Ly Po
Xem chi tiết
Akai Haruma
26 tháng 11 2018 lúc 23:56

Lời giải:

ĐKXĐ:.........

PT \(\Leftrightarrow (4x^2-12x+11)-5\sqrt{4x^2-12x+11}-11=0\)

Đặt \(\sqrt{4x^2-12x+11}=t\)

\(\Rightarrow t^2-5t-11=0\)

\(\Rightarrow \left[\begin{matrix} t=\frac{5+\sqrt{69}}{2}\\ t=\frac{5-\sqrt{69}}{2}\end{matrix}\right.\). Vì $t$ không âm nên \(t=\frac{5+\sqrt{69}}{2}\)

\(\Rightarrow 4x^2-12x+11=t^2=\frac{47+5\sqrt{69}}{2}\)

\(\Leftrightarrow 4x^2-12x-\frac{25+5\sqrt{69}}{2}=0\)

\(\Rightarrow x=\frac{1}{4}\left(6\pm \sqrt{86+10\sqrt{69}}\right)\) (thỏa mãn)

Vậy...........

P/s: Thực chất chỉ cần có hướng làm là được, nhưng đề ra dở ở cái số quá xấu chỉ tổ làm vất học sinh chứ không giải quyết được gì có ích.

kenny_hanbit
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:18

Ta có ; \(4x^2+12x=9+7x\sqrt{4x-3}\)(ĐKXĐ : \(x\ge\frac{3}{4}\))

\(\Leftrightarrow4x^2+5x-9=7x\left(\sqrt{4x-3}-1\right)\)

Xét vế trái : \(4x^2+5x-9=4\left(x-1\right)\left(x+\frac{9}{4}\right)=\left[\left(4x-3\right)-1\right]\left(x+\frac{9}{4}\right)=\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)\)

Suy ra phương trình : \(\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)=7x\left(\sqrt{4x-3}-1\right)\)

\(\Leftrightarrow\left(\sqrt{4x-3}-1\right)\left[\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}-1=0\\\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)(TMDK)

Ngọc Vĩ
18 tháng 7 2016 lúc 11:01

Bài này liên hợp

ĐKXĐ: \(x\ge\frac{3}{4}\)

\(4x^2+12x-16-7x\sqrt{4x-3}+7=0\)

\(\Rightarrow\frac{\left(4x^2+12x\right)^2-16^2}{4x^2+12x+16}-\frac{\left(7x\sqrt{4x-3}\right)^2-7^2}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+16}-\frac{196x^3-147x^2-49}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{\left(x-1\right)\left(4x^2+x+1\right)49}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\left(x-1\right)\left[\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}\right]=0\)

Vì \(\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}>0\)

=> x - 1 = 0 => x = 1

                                                                 Vậy x = 1

kenny_hanbit
18 tháng 7 2016 lúc 14:29

Cảm ơn 2 bạn nhìu. Nhưng mà sao kết quả # nhau thế?????

Linh nè
Xem chi tiết
Đàm Vũ Đức Anh
Xem chi tiết
qwerty
13 tháng 7 2017 lúc 9:50

ĐKXĐ: \(x\ge\dfrac{3}{4}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\) (1)

\(\Leftrightarrow\left(\sqrt{5x^2+5x}\right)^2=\left(\sqrt{8x^2+10x-12}\right)^2\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow5x^2+5x-\left(8x^2+10x-12\right)=8x^2+10x-12-\left(8x^2+10x-12\right)\)

\(\Leftrightarrow-3x^2-5x+12=0\)

\(\Leftrightarrow\left(-3x+4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+4=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x=-4\\x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\left(OK\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{4}{3}\right\}\)

Nguyễn Dương Thành Đạt
Xem chi tiết
Chung Đào Văn
30 tháng 8 2021 lúc 10:49

\(\sqrt{4x^2-12x+9}+3=2x\)

<=>\(\sqrt{4x^2-12x+9}=2x-3\)

<=>\(4x^2-12x+9=\left(2x-3\right)^2\)

<=>\(4x^2-12x+9=4x^2-12x+9\)

<=>\(4x^2-12x+9-4x^2+12x-9=0\)

<=>0=0( luôn đúng )

=> phương trình trên có vô số nghiệm

Vậy phương trình trên có vô số nghiệm

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:33

Ta có: \(\sqrt{4x^2-12x+9}+3=2x\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

\(\Leftrightarrow2x-3\ge0\)

hay \(x\ge\dfrac{3}{2}\)

Nguyễn Kiều Anh
Xem chi tiết
nthv_.
17 tháng 9 2021 lúc 22:07

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

Nguyễn Lê Phước Thịnh
17 tháng 9 2021 lúc 22:07

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

Nguyễn Thanh Hằng
17 tháng 9 2021 lúc 22:11

a/ \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=4\)

Vậy...

b/ \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy...

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2017 lúc 12:22

Đặt m =  x 2  – 2x

Ta có:  x 2 - 2 x 2  – 2 x 2  + 4x – 3 = 0

⇔  x 2 - 2 x 2  – 2( x 2  – 2x) – 3 = 0

⇔  m 2 – 2m – 3 = 0

Phương trình  m 2  – 2m – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  m 1  = -1,  m 2  = 3

Với m = -1 ta có:  x 2 – 2x = -1 ⇔  x 2  – 2x + 1 = 0

Phương trình  x 2  – 2x + 1 = 0 có hệ số a = 1, b = -2, c = 1 nên có dạng a + b + c = 0

Suy ra:  x 1 = x 2  = 1

Với m = 3 ta có:  x 2 – 2x = 3 ⇔  x 2 – 2x – 3 = 0

Phương trình  x 2  – 2x – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  x 1  = -1,  x 2 = 3

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 1,  x 2  = -1,  x 3  = 3