Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trang
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Trịnh Đình Thi
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Khách vãng lai đã xóa
Bánh cá nướng :33
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 7:50

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Khánh Băng Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 21:43

\(\left(x^2-x+2\right)\left(x-1\right)-x^2\left(x-1\right)^2+\left(2x+1\right)\left(x-1\right)^3\)

\(=\left(x-1\right)\left[x^2-x+2-x^2\left(x-1\right)+\left(2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\left(x-1\right)\left(x^2-x+2-x^3+x^2+2x^3-4x^2+2x+x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x^3-x^2-x+3\right)\)

Hà Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 21:13

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\\ =\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\\ =\left(x^2+3x+1\right)^2\)

ILoveMath
19 tháng 11 2021 lúc 21:14

\(=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1=\left(x^2+3x\right)\left(x^2+3x+1\right)+1\)

Đặt \(x^2+3x=t\)

\(\left(x^2+3x\right)\left(x^2+3x+2\right)+1=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

Nguyễn Hạ Long
Xem chi tiết
Trần Đức Thắng
3 tháng 8 2015 lúc 21:08

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

Nguyễn Gia Hiệu
1 tháng 8 2021 lúc 16:57

X^2-6+8

Khách vãng lai đã xóa
Hà Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2021 lúc 19:02

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Kudo Shinichi
24 tháng 11 2021 lúc 19:06

x(x+1)(x+2)(x+3)+1

= [x(x+3)][(x+1)(x+2)]+1

=(x2+3x)(x2+3x+2)+1

Đặt x2+3x+1=y, ta có: 

(y-1)(y+1)+1

=y2-1+1

=y2

Thay y=x2+3x+1, lại có: 

(x2+3x+1)2

yen hai
Xem chi tiết
Trần Thị Loan
30 tháng 7 2015 lúc 10:19

= (x4 + 2x2 + 1) + (2x4 + x+ 2) - (x2 + x+1)2

= [(x+ 1) - (x2 + x+1)2  ] + (2x4 + x+ 2) 

= (x+ 1 + x2 + x + 1). (x+ 1 - x2 - x- 1)  + (2x4 + x+ 2) 

= (2x+ x + 2) (-x) + (2x4 + x+ 2)  = -2x3 - x- 2x + 2x4 + x+ 2 = -2x3 + 2x4 - 2x + 2

= -2x3. (1 - x) + 2.(1 - x) = (1- x). (-2x3 + 2) = 2.(1 - x)(1- x3) = 2. (1- x). (1- x) .(1 + x + x2) = 2.(1-x)2. (1 + x + x2)

nguyễn trần bảo ngọc
Xem chi tiết
alibaba nguyễn
2 tháng 8 2016 lúc 6:28
[x + (3+√5)/2]^2[x + (3-√5)/2]^2
alibaba nguyễn
2 tháng 8 2016 lúc 6:40

Còn không ghi là (x^2 + 3x + 1)^2

Do thanh thu
2 tháng 8 2016 lúc 9:18

=(X2+3X)(X2+3X+2)+1

DAT X2+3X+1=Y

=>(Y-1)(Y+1)+1 =y2-1+1=Y2=(X2+3X+1)2

NGUYỄN ANH PHƯƠNG
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
31 tháng 8 2019 lúc 11:03

\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)

\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)

\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)\(A=\left(x-1\right)\left(x^2-5x+6+x-2\right)-\left(x-1\right)\)

\(A=\left(x-1\right)\left(x^2-4x+4\right)-\left(x-1\right)\)

\(A=\left(x-1\right)\left(x-2\right)^2-\left(x-1\right)\)

\(A=\left(x-1\right)\left[\left(x-2\right)^2-1\right]\)

\(A=\left(x-3\right)\left(x-1\right)^2\)

okazaki * Nightcore - Cứ...
31 tháng 8 2019 lúc 11:06

link tham khảo 

https://olm.vn/hoi-dap/detail/9212510579.html

hok tót

🎉 Party Popper
31 tháng 8 2019 lúc 11:19

A = (x - 1)(x - 2)(x - 3) + (x - 1)(x - 2) - (x - 1)

   = (x - 1)[(x - 2)(x - 3) + (x - 2)] - (x - 1)

   = (x - 1)(x2 - 2x - 3x + 6 + x - 2) - (x - 1)

   = (x - 1)(x2 - 4x + 4) - (x - 1)

   = (x - 1)(x- 2x2 + 22) - (x - 1)

   = (x - 1)(x - 2)2 - (x - 1)

   = (x - 1)[(x - 2)2 - 1]

   = (x - 1)(x - 2 - 1)(x - 2 + 1)

   = (x - 1)(x - 3)(x - 1)

   = (x - 3)(x - 1)2