Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yori Sorah
Xem chi tiết
Người Qua Đường
Xem chi tiết
Chanh Xanh
19 tháng 11 2021 lúc 9:58

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ngọc Đỗ
Xem chi tiết
Chà Chanh
10 tháng 12 2020 lúc 22:26

b) Gọi OD ⊥ AC tại I ( I thuộc OD)

Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)

Do đó OD // CB

Xét △ABC, có:

OD// CB (cmt)

O là trung điểm AB ( AB là đường kính)

Do đó OI là đường trung bình ABC

=>I là trung điểm AC

Có: OD ⊥  AC(gt) , I trung điểm AC (cmt) (I thuộc OD)

Nên OD là đường trung trực của AC

c) 

Xét t/giác AOC, có:

AO=OC (=R)

Do đó t/giác AOC cân tại O

Mà OI ⊥  AC

Nên OI cũng là đường phân giác góc AOC

=> AOI = COI

Xét t/giác ADO và t/giác DOC, có:

OD chung

AOI = COI (cmt)

OA=OC (=R)

Do đó t/giác ADO = t/giác CDO (c-g-c)

=> DAO = DCO

Mà DAO= 90

Nên DCO = 90

Có C thuộc (O) ( dây cung BC)

Nên CD là tiếp tuyến

Chà Chanh
11 tháng 12 2020 lúc 13:38

a) Xét △ABC, có:

AB là đường kính của (O) (gt)

Do đó △ABC vuông tại C

Xét ABC (C=90), có:

 +\(AC^2+CB^2=AB^2\left(Pytago\right)\) \(^{ }\Rightarrow AC^2=AB^2-CB^2\)

=> AC = \(R\sqrt{3}\)

\(sin_A=\dfrac{CB}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow A=30^o\)

+ A + B = 90 (△ABC vuông tại C)

30 + B = 90

B = 90 - 30

B= 60

Nguyễn Ngọc Khánh
12 tháng 5 2022 lúc 19:31

b) Gọi OD ⊥ AC tại I ( I thuộc OD)

Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)

Do đó OD // CB

Xét △ABC, có:

OD// CB (cmt)

O là trung điểm AB ( AB là đường kính)

Do đó OI là đường trung bình ABC

=>I là trung điểm AC

Có: OD ⊥  AC(gt) , I trung điểm AC (cmt) (I thuộc OD)

Nên OD là đường trung trực của AC

c) 

Xét t/giác AOC, có:

AO=OC (=R)

Do đó t/giác AOC cân tại O

Mà OI ⊥  AC

Nên OI cũng là đường phân giác góc AOC

=> AOI = COI

Xét t/giác ADO và t/giác DOC, có:

OD chung

AOI = COI (cmt)

OA=OC (=R)

Do đó t/giác ADO = t/giác CDO (c-g-c)

=> DAO = DCO

Mà DAO= 90

Nên DCO = 90

Có C thuộc (O) ( dây cung BC)

Nên CD là tiếp tuyến

toan ha
Xem chi tiết
Quang Minh Nguyễn
Xem chi tiết
Lê Hồ Duy Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 22:40

a) Xét (O) có 

ΔACB nội tiếp đường tròn(A,C,B∈(O))

AB là đường kính của (O)

Do đó: ΔACB vuông tại C(Định lí)

⇒AC⊥CB

hay AC⊥MB(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh huyền MB(cmt), ta được:

\(BC\cdot BM=AB^2\)

\(\Leftrightarrow BC\cdot BM=\left(2\cdot R\right)^2=4R^2\)(đpcm)

c) Xét ΔOAD có OA=OD(=R)

nên ΔOAD cân tại O(Định nghĩa tam giác cân)

mà OM là đường cao ứng với cạnh đáy AD(gt)

nên OM là đường phân giác ứng với cạnh AD(Định lí tam giác cân)

\(\widehat{AOM}=\widehat{DOM}\)

Xét ΔAOM và ΔDOM có 

OA=OD(=R)

\(\widehat{AOM}=\widehat{DOM}\)(cmt)

OM chung

Do đó: ΔAOM=ΔDOM(c-g-c)

⇒MA=MD(hai cạnh tương ứng)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh MB, ta được: 

\(AM^2=MC\cdot MB\)(2)

Từ (1) và (2) suy ra \(MD^2=MC\cdot MB\)(đpcm)

HỒNG NGỌC
Xem chi tiết
Cao Hiền Lương
Xem chi tiết
Lê Cường
Xem chi tiết
Lê Cường
25 tháng 4 2022 lúc 9:56

Cứu em