Cho (O,R) đường kính AB và tiếp tuyến Ax,AC là dây cung. Tia phân giác góc xAC cắt (O) tại D. Chứng minh rằng:
a)OD vuông góc với AC
b) Nếu góc xAC =60 độ. Tính diện tích AEFK theo R
Cho nửa (O) đường kính AB, vẽ tiếp tuyến Ax, dây cung AC tùy ý, phân giác góc xAC cắt (O) tại D và cắt BC tại M, AC cắt BD tại H.
a) Chứng minh MD.MA=MB.MC (đã cm)
b) Tính độ dài BM theo R. Từ đó suy ra quỹ tích của M (chỉ làm phần thuận)
c) Tiếp tuyến tại C của (O) cắt MH tại I. Chứng minh I là tâm đường tròn ngoại tiếp MDHC (đã cm)
d) OD cắt Ax tại E. Cm E,I,C thẳng hàng
Cho đường tròn (O ; R) đường kính AB. Vẽ dây AC sao cho AC = R. Gọi I là trung điểm của dây AC. OI cắt tiếp tuyến Ax tại M. Ax là tiếp tuyến của đường tròn (O)(O) tại A. Chứng minh rằng :
a) Góc ACB bằng 900 suy ra độ dài BC.
b) OM là phân giác góc COA.
c) MC là tiếp tuyến của đường tròn (O).
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Bài 1:Cho đường tròn (O;R), đường kính AB, dây cung BC=R
a, Tính các cạnh và các góc chưa biết của tam giác ABC theo R
b, Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) ở D
CM: OD là đường trung trực của AC
tam giác ADC là hình gì? Vì sao?
c, CM: DC là tiếp tuyến của đường tròn (O)
d, Đường thẳng OD cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác ADC
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
a) Xét △ABC, có:
AB là đường kính của (O) (gt)
Do đó △ABC vuông tại C
Xét ABC (C=90), có:
+\(AC^2+CB^2=AB^2\left(Pytago\right)\) \(^{ }\Rightarrow AC^2=AB^2-CB^2\)
=> AC = \(R\sqrt{3}\)
+ \(sin_A=\dfrac{CB}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow A=30^o\)
+ A + B = 90 (△ABC vuông tại C)
30 + B = 90
B = 90 - 30
B= 60
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
: Cho đường tròn (O; R) có đường kính AC và dây cung BC = R. a) Tính số đo của  và độ dài dây AB theo R. b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn (O). c) Vẽ dây BE ⊥ AC tại M . Chứng minh tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R. d)Tiếp tuyến tại C của (O) cắt DB tại K . Chứng minh AK, CD, BE đồng quy. MK CHỈ CẦN CÂU C THÔI Ạ
Cho đường tròn tâm O bán kính R có đường kính AB, dây cung BC=R.
a) Tính AC theo R và số đo góc B của tam giác ABC.
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn tâm O ở D.
Chứng minh DC là đường tiếp tuyến của đường tròn tâm O.
c) Đường thẳng OD cắt đường tròn tâm O tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ADC.
Cho đường tròn (O;R) có đường kính AB. Vẽ tiếp tuyến Ax, lấy M bất kì thuộc tia Ax, MB cắt đường tròn (O) tại C.
a) Chứng minh AC vuông góc với MB.
b) Tính BC.BM theo R.
c) Vẽ dây AD vuông góc với OM tại H. Chứng minh MD2 = MC.MB.
Các cậu giúp mình với, mình cảm ơn nhiều ạ ! (Vẽ hình giúp mình với ~ . ~)
a) Xét (O) có
ΔACB nội tiếp đường tròn(A,C,B∈(O))
AB là đường kính của (O)
Do đó: ΔACB vuông tại C(Định lí)
⇒AC⊥CB
hay AC⊥MB(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh huyền MB(cmt), ta được:
\(BC\cdot BM=AB^2\)
\(\Leftrightarrow BC\cdot BM=\left(2\cdot R\right)^2=4R^2\)(đpcm)
c) Xét ΔOAD có OA=OD(=R)
nên ΔOAD cân tại O(Định nghĩa tam giác cân)
mà OM là đường cao ứng với cạnh đáy AD(gt)
nên OM là đường phân giác ứng với cạnh AD(Định lí tam giác cân)
⇒\(\widehat{AOM}=\widehat{DOM}\)
Xét ΔAOM và ΔDOM có
OA=OD(=R)
\(\widehat{AOM}=\widehat{DOM}\)(cmt)
OM chung
Do đó: ΔAOM=ΔDOM(c-g-c)
⇒MA=MD(hai cạnh tương ứng)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh MB, ta được:
\(AM^2=MC\cdot MB\)(2)
Từ (1) và (2) suy ra \(MD^2=MC\cdot MB\)(đpcm)
Cho điểm M nằm ngoài (O; R) vẽ các tiếp tuyến MA, MB với (O; R). Vẽ đường kính AC, tiếp tuyến tại C của đường tròn (O; R) cắt AB ở D. Chứng minh rằng:
a/Tứ giác MAOB nội tiếp. b/ AB.AD = 4R c/ OD vuông góc với MC
cho (O;R)đường kính AB và điểm M nằm trên (O;R) với MA<MB (M khác A và B). Tiếp tuyến tại M của (O;R) cắt tiếp tuyến tại A và B của (O;R) theo thứ tự ở C và D
a. Chứng minh tứ giác ACDB là hình thang
b. AD cắt (O;R)tại E,OD cát MB tại N,C,Chứng minh OD vuông góc MB và DE*DA=DN*DO
c. đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng minh tứ giác OFDB là hình chữ nhật
d. Cho AM=R tính theo R diện tích tứ giác ACDB
1/Cho đường tròn (O;k )và 2 đường kính AB, CD vuông góc với nhau. Gọi M là 1 điểm trên cung nhỏ BC .Dây MA cắt, CD tại E a) cm tứ giác oemb nội tiếp b) nếu mb=r CM tia BE là tia phân giác của MBA Tính độ dài dây am theo R Tính diện tích hình giới hạn bởi đây cùng nhỏ AM (Gọi là hình viên phân)