b) Tìm hai số lẻ liên tiếp, biết rằng hiệu các lập phương của chúng là 6938.
b) Tìm hai số lẻ liên tiếp, biết rằng hiệu các lập phương của chúng là 6938.
Gọi 2 số lẻ liên tiếp là a; b (a>b)
\(\Rightarrow a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)=6938\)
\(\Rightarrow2.\left(a^2+ab+b^2\right)=6938\Rightarrow a^2+ab+b^2=3469\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+3ab=3469\Rightarrow\left(a-b\right)^2+3ab=3469\)
\(\Rightarrow2^2+3ab=3469\Rightarrow3ab=3465\Rightarrow ab=1155\)
\(\Rightarrow a\left(a-2\right)=1155\Leftrightarrow a^2-2a-1155=0\)
Giải PT bậc 2 => a=35 => b=33
Tìm 2 số tự nhiên lẻ liên tiếp, biết rằng hiệu các bình phương của chúng bằng 56
Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.
Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.
=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15
Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp là một số lẻ
Sửa đề: Là số chẵn
Gọi hai số lẻ liên tiếp là 2n-1 và 2n-3
Ta có: \(\left(2n-1\right)^2-\left(2n-3\right)^2\)
\(=\left(2n-1-2n+3\right)\left(2n-1+2n-3\right)\)
\(=2\left(4n-4\right)⋮2\)
tìm hiệu của hai số lẻ biết giữa chúng có 19 số chẵn liên tiếp . Hiệu của hai số đó là:
Cách 1 :Theo đề bài 2 số lẻ đó là 2k+1 và 2k + 39 ( có 28 số chẵn liên tiếp )
Hiệu 2 số là : 2k+39-2k-1=38
Cách 2 : Giữa 2 số lẻ là 2 số chẵn liên tiếp khoảng cách là 4
Vậy Giữa 2 số lẻ là 19 số chẵn liên tiếp khoảng cách là 38 ( công thức tam suất )
Tìm 2 số chẵn liên tiếp, biết rằng hiệu các bình phương của chúng là 156 cách giải+ đáp án
Lời giải:
Gọi hai số chẵn liên tiếp là $a$ và $a+2$. Theo bài ra ta có:
$(a+2)^2-a^2=156$
$\Leftrightarrow (a+2-a)(a+2+a)=156$
$\Leftrightarrow 2(2a+2)=156$
$\Leftrightarrow 2a+2=78$
$\Leftrightarrow a=38$
Vậy hai số chẵn cần tìm là $38$ và $40$
Gọi hai số chẵn liên tiếp là 2k và 2k+2
Theo đề, ta có phương trình:
\(\left(2k+2\right)^2-\left(2k\right)^2=156\)
\(\Leftrightarrow4k^2+8k+4-4k^2=156\)
\(\Leftrightarrow8k=152\)
hay k=19
Vậy: Hai số cần tìm là 38 và 40
Tìm hai số tự nhiên liên tiếp biết rằng hiệu các bình phương của chúng bằng 40.
Giúp mình vs mn :"<
Gọi số bé nhất trong 2 số đó là a (a thuộc N)
=> Số còn lại là a+1
Vì hiệu bình phương của chúng bằng 40 nên ta có phương trình sau:
(a+1)2 - a2 = 40
<=> a2 + 2a + 1 - a2 = 40
2a + 1 = 40
a = 19,5 (k thoả mãn a thuộc N)
Vậy, không tìm được 2 số thoả mãn đề bài
Bạn thử xem lại đề bài xem, vì 2 số tn liên tiếp sẽ 1 lẻ 1 chẵn, bình phương lên cũng 1 lẻ 1 chẵn, vậy hiệu phải là số lẻ chứ
hiệu lập phương của hai số lẻ liên tiếp là 1538. số nhỏ là..........
=> 17^3 - 15^3 = 1538
số nhỏ là 15 . Bài này trong violimpic nè
Bài 1: bạn An tính bình phương của bốn số tự nhiên được bốn kết quả là 47436, 16819, 27641, 41528. Bạn Tuấn nói rằng cả bốn kết quả trên đều sai. Vì sao Tuấn khẳng định được như vậy ?
Bài 2: Tính a^2 + b^2, biết a + b = 5 và ab=1
Bài 3: Viết tích (a^2+b^2)(c^2+d^2) dưới dạng tổng hai bình phương
Bài 4: Tìm hai số tự nhiên lẻ liên tiếp, biết rằng hiệu các bình phương của chúng bằng 56
Bài 5: Tìm số tự nhiên có hai chữ số, biết rằng hiệu của số đó và số gồm hai chữ số ấy viết theo thứ tự ngược lại bằng 36, hiệu các bình phương của chữ số hàng chục và chữ số hàng đơn vị bằng 40
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
Bài 4 :
a) Tìm hai số tự nhiên chẵn liên tiếp biết hiệu các bình phương của 2 số ấy là 68
b) Tìm hai số tự nhiên lẻ liên tiếp biết tổng các bình phương của 2 số ấy là 2594
c) Tìm tất cả số tự nhiên n thỏa mãn \(n^2+6n+12\) là số chính phương
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20