\(\sqrt{x^2+6} = x - 2\sqrt{x^3-1}\)
Giair giùm . Tks ạ =.=
Giair phương trình
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-1}+\sqrt{x^2+x-6}\)
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
\(\sqrt{x^{ }2-x-30}-3\sqrt{x+5}-2\sqrt{X-6}=-6\)
Giair phương trình vô tỷ giúp mình vs nha
ĐKXĐ: ...
\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)
\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)
đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)
\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)
Bài 1: Giair các phương trình sau:
3, \(x^2-2-2\sqrt{4x-7}=0\)
4, \(4x^2-5x+1+2\sqrt{x-1}=0\)
BÀI 2: Giair các phương trình sau:
4, \(\sqrt{x-1}+\sqrt{5-x}=x^2-2x+5\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Bài 3: Giair các phương trình sau:
2, \(x^2-x+2=2\sqrt{x^2-x+1}\)
Bài 4: Giair các phương trình sau:
2, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
4, \(\left(1+x\sqrt{x^2+1}\right)-\left(\sqrt{x^2+1}-x\right)=1\)
Bài 5: Giair các phương trình sau:
1, \(\sqrt{2x^2-4x+5}-x+4=0\)
2, \(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
Bài 6: Cho x,y thỏa mãn \(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\). Tính giá trị biểu thức:
A = \(\left(4x-2\right)^{2017}+\left(4y-1\right)^{2018}\)
\(x^2-2-2\sqrt{4x-7}=0\)
\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(4x^2-5x+1+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)
\(\Rightarrow x=1\)
. . .
\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)
\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Đến đây lập bảng xét dấu
. . .
\(x^2-x+2=2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)
Tự làm tiếp nhé.
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)
\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x=5\)
. . .
\(\sqrt{2x^2-4x+5}-x+4=0\)
\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)
\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)
\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)
\(\Leftrightarrow x^2+5x-6=1\)
Tự làm tiếp nhé.
. . .
\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)
Tự làm tiếp nhé.
- Lô Vỹ Vy Vy Nếu câu hỏi liên quan đến hình học, thì mỗi lần đăng một câu thôi, nếu câu hỏi liên quan đến đại số và số học thì có thể đẳng 3 - 4 câu một lần. Lần sau đừng đăng dày đặc như thế này nữa.
1. \(x+\sqrt{2x-3}\)\(=1+\sqrt{x-1}+\sqrt{x^2-3x+3}\)
2. \(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\)
3. \(\sqrt[6]{6x-5}=\frac{x^7}{8x^2-10x+3}\)
4. \(\sqrt{x-3}+\sqrt{11-x}+\)\(6y+3\sqrt{4-2y^2}-15=0\)
5. \(\sqrt{2x-3}+\sqrt{21-2x}=\)\(x^4-12x^3+37x^2-12x+42\)
6. \(4x^2+2=3\sqrt[3]{4x^3+x}\)
giải pt vô tỉ. Ai giúp với tks tks tks <3
Giair phương trình: \(\left(x+2\right)\sqrt{3x+6}-2\sqrt{x^2+x-1}+3x^2-10=0\)
Giair phương trình:
1) \(\sqrt[5]{32-x^2}-\sqrt[5]{1-x^2}=4\)
2) \(\sqrt{x}+\sqrt[4]{20-x}=4\)
3) \(x^3+1=2\sqrt{3x-1}\)
4) \(\sqrt[3]{x-1}+3=\sqrt[4]{82-x}\)
5)
\(a.\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(b.\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
a) ĐKXĐ: \(x\ge0\)
Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)
\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)
\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)
\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)
Giair hệ phương trình
1.\(\hept{\begin{cases}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{cases}}\)
2.\(\hept{\begin{cases}y^3+y=x^3+3x^2+4x+2\\\sqrt{1-x^2}-\sqrt{y}=\sqrt{2-y}-1\end{cases}}\)
GIÚP MÌNH VỚI, MÌNH CẦN GẤP LẮM Ạ
Rút gọn bài này giúp mk vs ạ m.n.:
P= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
mk đaq cần gấp ạ tks trước!
điều kiện : \(x\ge1\)
ta có : \(P=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)
\(\Rightarrow\left[{}\begin{matrix}P=2\sqrt{x-1}\left(x\ge2\right)\\P=2\left(1\le x< 2\right)\end{matrix}\right.\)
vậy .....................................................................................................
Gỉai phương trình :\(\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=-x^2+4x-2\)(Biến đổi các biểu thức trong căn thành A2 rồi áp dụng \(\sqrt{A^2}=\left|A\right|\))
Giup mk với ạ mk đg cần gấp tks mn nhìu
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}=-x^2+4x-2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=-x^2+4x-2\)
\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|=-x^2+4x-2\)
\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|=2-\left(x-2\right)^2\)
Ta có: \(VP=2-\left(x-2\right)^2\le2\)
\(VT=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=2\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại x thỏa mãn
Vậy pt vô nghiệm