Câu định lí về tính chất đường trung tuyến : " Trong 1 tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau " cái từ " ứng " trong câu định lí trên nghĩa là như thế nào
Chứng minh định lí: trong một tam giác cân , hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.?
Và
Hãy chứng minh định lí đảo của định lí trên: nếu hai tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân
Ta có định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Hãy chứng mình định lí đảo của định lí trên: Nếu tam giác có hai đường trung tuyễn bằng nhau thì tam giác đó cân.
Vẽ hình và viết cách giải giùm mình.
Chứng minh định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Giả sử ΔABC cân tại A có hai đường trung tuyến BM và CN, ta cần chứng minh BM = CN.
Ta có: AC = 2.AM, AB = 2. AN, AB = AC (vì ΔABC cân tại A)
⇒ AM = AN.
Xét ΔABM và ΔACN có:
AM = AN
AB = AC
Góc A chung
⇒ ΔABM = ΔACN (c.g.c) ⇒ BM = CN (hai cạnh tương ứng).
(Còn một số cách chứng minh khác, nhưng do giới hạn kiến thức lớp 7 nên mình xin sẽ không trình bày.)
CHỨNG MINH ĐỊNH LÍ : TRONG MỘT TAM GIÁC CÂN, HAI ĐƯỜNG TRUNG TUYẾN ỨNG VỚI HAI CẠNH BÊN THÌ BẰNG NHAU
Chứng minh định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Vì ∆ ABC cân tại A=> AB = AC mà M, N là trung điểm AC, AB nên CM = BN
Do đó ∆CMB ;∆BNC có:
BC chung
CM = BN (cm trên)
AB = AC (∆ABC cân)
=> BM = CN (đpcm)
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Vì ∆ ABC cân tại A=> AB = AC mà M, N là trung điểm AC, AB nên CM = BN
Do đó ∆CMB ;∆BNC có:
BC chung
CM = BN (cm trên)
AB = AC (∆ABC cân)
=> BM = CN
Chứng minh định lí: Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Ta có AN = NB = AB/2 (Tính chất đường trung tuyến)
AM = MC = AC/2 (Tính chất đường trung tuyến)
Vì ∆ ABC cân tại A=> AB = AC nên AM = AN
Xét ∆BAM ;∆CAN có:
AM = AN (cm trên)
Góc A chung
AB = AC (∆ABC cân)
Nên suy ra ∆BAM = ∆CAN (c-g-c)
=> BM = CN ( 2 cạnh tương ứng)
Chứng minh định lí : Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau ?
Giả sử ∆ABC cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN
Vì ∆ ABC cân tại A=> AB = AC mà M, N là trung điểm AC, AB nên CM = BN
Do đó ∆CMB ;∆BNC có:
BC chung
CM = BN (cm trên)
AB = AC (∆ABC cân)
=> BM = CN
Chứng minh định lí : Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
tick mk di bao gio mk hoc roi thi mk giai cho
nếu trong định lí ghi vậy thì chắc chắn điều này luồn đúng, đéo cần chứng minh cũng biết
Su dung cac tinhchat tam giac can ma cm 2 tam giac bang nhau
Duong trung tuyen la dg trung trc,,Duong cao ,,,,ra dc ma
Tick mik nke
1. Hãy chứng minh định lý: trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
2. Hãy chứng minh định lí: nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Giúp mình với!
Ai nhanh 3 tick
-Tam giác ABC cân tại A có BE và CD là 2 đtt
=> AB=AC => AE=AD
Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC
=> ABE=ACD (c g c)
=>BE=CD
-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G
=> EG=DG , BG=CG
\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG
=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)
=>BD=EC
Xét \(\Delta EBC\) và \(\Delta DCB\) có: BE=CD , BC chung, BD=EC
=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)
=>\(\widehat{EBC}=\widehat{DCB}\)
=> TgABC cân tại A (đpcm)
Câu định lí về tính chất đường trung tuyến : " Trong 1 tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau " cái từ " ứng " trong câu định lí trên nghĩa là như thế nào
ứng thì có nghĩa là cái đường trung tuyến bạn kẻ từ đỉnh đến cạnh đối diện của góc đó á