Tìm x thỏa mãn điều kiện
(3x-5)^2 -(3x +1)^2 =8
2x(8x-3)-(4x-3)^2 =27
Help me!
5x^2(3x-2)-3x^2(5x+2)+2x(3+8x)=21
Nhớ là tìm X để thỏa mãn điều kiện đề bài
\(5x^2\left(3x-2\right)-3x^2\left(5x+2\right)+2x\left(3+8x\right)=21\)
\(\Leftrightarrow15x^3-10x^2-15x^3-6x^2+6x+16x^2-21=0\)
\(\Leftrightarrow6x-21=0\)
\(\Leftrightarrow6x=21\)
\(\Leftrightarrow x=3,5\)
Tìm x thỏa mãn điều kiện: 4 x + 3 x + 1 = 3
Tìm x thỏa mãn điều kiện: 4 x + 3 x + 1 = 3
Tìm các đơn thức thu gọn A, B, C, D biết A và C đồng dạng đồng thời thỏa mãn các điều kiện sau:
\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\) và \(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\) nhờ mn giúp mình với
\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\)
\(\Leftrightarrow-A+B=5x^2y^3+x^3y^2\)
\(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\)
\(\Leftrightarrow C-D=8x^2y^3-4x^3y^2\)
Do \(A\) và \(C\) đồng dạng nên \(A=-5x^2y^3,C=8x^2y^3\) suy ra \(B=x^3y^2,D=4x^3y^2\) hoặc \(A=-x^3y^2,C=-4x^3y^2\) suy ra \(B=5x^2y^3,D=-8x^2y^3\).
Cho x, y là 2 số dương thỏa mãn điều kiện x + y = 1. CMR :
\(3\left(3x-2\right)^2+\frac{8x}{y}\ge7\)
\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)
\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)
\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)
Dấu " = " xảy ra khi \(x=\frac{1}{3}\)
Tìm x thỏa mãn các điều kiện:
a, ( 5ax\(^3\) - 9ax\(^2\) ) : ax\(^2\) = 1 Với a là một hằng số khác 0
b, \(\frac{3x^5\left(4x^2+5\right)^2}{\left(4x^2+5\right)^2}-\frac{x\left(3x^4+7\right)^2}{3x^4+7}=2x-5\)
Cho x,y là hai số dương thỏa mãn điều kiện x+y=1
cmr \(3\left(3x-2\right)^2+\frac{8x}{7}\ge7\)
Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?
à là \(\frac{8x}{y}\)đó
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Tìm x thỏa mãn điều kiện: 2 x - 3 x - 1 = 2