TOÁN HÌNH LỚP 9:
Cho đường tròn tâm O đường kính AB. Vẽ đường tròn tâm I đường kính OA. Bán kính OC của đường tròn O cắt đường tròn ( I ) tại D. Vẽ CH vuông góc với AB. Chứng minh : ACDH là hình thang cân.
Cho đường tròn tâm O đường kính AB. Vẽ đường tròn tâm I đg kính OA bán kính OC của đg tròn tâm O cắt đg trong tâm I tại D. Vẽ CH vuong goc AB (C thuộc đg tròn tâm O, đg kính AB). C/m rằng ACDH là hình thang cân. Vẽ hình giúp e với luôn đk ạ
Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
góc ADC=góc AHC=90 độ
=>AHDC nội tiếp
Xét ΔOHC vuông tại H và ΔODA vuông tại D có
OC=OA
góc HOC chung
=>ΔOHC=ΔODA
=>OH=OD
Xét ΔOAC có OH/OA=OD/OC
nên HD//AC
Xét tứ giác AHDC có
HD//AC
góc HAC=góc DCA
=>AHDC là hình thang cân
1. Cho đường tròn (O) đường kính AB. Vẽ đường tròn (I) đường kính OA. Bán kính OC của đường tròn (O) cắt đường tròn (I) tại D. Vẽ CH vuông góc AB. Chứng minh tứ giác ACDH là hình thang cân.
2. Cho tứ giác ABCD có góc C+góc D=90 độ. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC và CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.
Hãy xác định hàm số y=ax+b, biết: đồ thị hàm số song song với đường thẳng y=2x và cắt trục hoành tại điểm có hoành độ bằng -3
https://www.google.com.vn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=2ahUKEwiz7t_v7vXcAhWadn0KHXIyAMcQFjAHegQIAxAB&url=https%3A%2F%2Folm.vn%2Fhoi-dap%2Fquestion%2F1014815.html&usg=AOvVaw0h6fXqwysaNQwyYWr3DvPL
Cho nửa đường tròn tâm O, đường kính AB. Lấy OA làm đường kính, vẽ nửa đường tròn nằm trên nửa mặt phẳng bờ AB chứa nửa đường tròn tâm O. Trên nửa đường tròn đường kính OA lấy điểm C không trùng với A và O, tia OC cắt nửa đường tròn tâm O tại D. Vẽ DH vuông góc với AB. CHứng minh AHCD là hình thang cân
cho đường tròn tâm o đường kính AB; bán kính OC vuông góc AB lấy F thuộc OB. kẻ CF cắt đường tròn tâm O tại D . vẽ tiếp tuyến tại D của đường tròn tâm O cắt AB tại E. chứng minh DE=EF
Cho nữa đường trong o, đường kính AB. C là một điểm thuộc đường tròn o. H là hình chiếu của C tre AB. Qua trung điểm của CH , vẽ đường vuông góc với OC cắt nữa đường tròn tại D và E . Chứng minh rằng AB là tiếp tuyến của đường tròn tâm C bán kính CD.
có cách này nè:
vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF => = CF.CK(1)
ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2 = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H thuộc (O;CD). mà CH vuông góc với AB. => dpcm
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho nửa đườbg tròn tâm O , đường kính AB. Lấy OA làm đường kính của nửa đường tròn cùng nằm trên 1 nửa mặt phẳng bờ AB với nửa đường tròn (O). Trên nửa đường tròn đường kính OA lấy điểm ( C khác A; O) . Tia OC cắt đường tròn (O) tại D. Vẽ DH vuông góc với AB. Chứng minh rằng :
a, tam giác AOC = tam giác DOH
b, Tứ giác AHCD là hình thang cân
Cho nửa đường tròn tâm O đường kính AB, lấy OA làm đường kính vẽ nửa đường tròn đường kính AB. Trên nửa đường tròn lấy C (C khác A;9), tia OC cắt nửa đường tròn tâm O tại D, kẻ BH vuông góc AB
CMR: a, tam giác AOC=tam giác DOH
b, AHCD là hình thang cân