Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Thị Linh Chi
Xem chi tiết
Rii Sara
25 tháng 10 2016 lúc 21:07

a) Ta có 252=152+202 hay BC2=AB2+AC2

=> ▲ABC vuông tại A

b) Xét ▲ABC vuông tại A có
SinB = \(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
TanC = \(\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)
=> SinB + TanC = \(\frac{4}{5}+\frac{3}{4}=\frac{31}{20}\)

c) I là trung điểm AC => AI = 10cm.
=> BI2 = 102+152= 325 => BI = \(5\sqrt{13}\)
Xét ▲ABI có TanI = \(\frac{3}{2}\)=> góc BIA = 56'18'

=> BIC = 180 - 56'18' = 123 độ 41 phút.

 

duong lan anh
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 9 2021 lúc 15:37

\(a,AB^2+AC^2=15^2+20^2=625=25^2=BC^2\)

Vậy ABC là tam giác vuông tại A (pytago đảo)

\(b,\)Áp dụng HTL tam giác ABC vuông tại A, đường cao AH

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\CH=\dfrac{AC^2}{BC}=12\left(cm\right)\\AH=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Vì AM là phân giác nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow MB=\dfrac{3}{4}MC\)

Mà \(MB+MC=BC=25\Rightarrow\dfrac{7}{4}MC=25\)

\(\Rightarrow MC=\dfrac{100}{7}\left(cm\right);MB=\dfrac{75}{7}\left(cm\right)\)

help
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 19:26

a: Xét ΔBAI vuông tại A và ΔBAC vuông tại A có

BA chung

AI=AC

=>ΔBAI=ΔBAC

b: Xét ΔEIA và ΔFCA có

EI=FC

góc I=góc C

IA=CA

=>ΔEIA=ΔFCA

=>AE=AF

=>ΔAEF cân tại A

Nguyễn Nhật Hằng
Xem chi tiết
nguyễn thị yên
Xem chi tiết
hanvu
16 tháng 2 2022 lúc 22:46

a, Vì AB2+AC2=152+202=625 cm

         BC2=252=625 cm

=> AB2+AC2=BC2 => tg ABC vuông tại A

b, Ta có AB2+AC2=32 cm

              BC2=32 cm

=> AB2+AC2=BC=> tg ABC vuông tại A

Mà AB=AC=4cm

=> tg ABC vuông cân tại A

LULILA
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 13:19

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HC=AC^2/BC=20^2/25=16cm

Xét ΔACB vuông tại A có sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: Xét ΔHAB có HI/HA=HK/HB

nên IK//AB

=>KI vuông góc AC

Xét ΔCAK có

KI,AH là đường cao

KI cắt AH tại I

=>I là trực tâm

c: Xét ΔKBA và ΔIAC có

góc KBA=góc IAC

AB/AC=KB/IA=HB/HA

=>ΔKBA đồng dạng với ΔIAC

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
13 tháng 9 2023 lúc 22:24

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 25 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{25 - BD}} = \frac{{15}}{{20}} \Leftrightarrow 20.BD = 15.\left( {25 - BD} \right) \Rightarrow 20.BD = 375 - 15.BD\)

\( \Leftrightarrow 20BD + 15BD = 375 \Leftrightarrow 35BD = 375 \Rightarrow BD = \frac{{375}}{{35}} = \frac{{75}}{7}\)

\( \Rightarrow DC = 25 - \frac{{75}}{7} = \frac{{100}}{7}\)

Vậy \(BD = \frac{{75}}{7}cm;DC = \frac{{100}}{7}cm\).

 Vì \(DE//AB\) nên \(\frac{{DC}}{{BC}} = \frac{{DE}}{{AB}} \Rightarrow \frac{{\frac{{100}}{7}}}{{25}} = \frac{{DE}}{{15}} \Leftrightarrow DE = \frac{{100}}{7}.15:25 = \frac{{60}}{7}\) (hệ quả của định lí Thales).

Vậy \(BD = \frac{{75}}{7}cm;DC = \frac{{100}}{7}cm;DE = \frac{{60}}{7}cm\).

b) Xét tam giác \(ABC\) có:

\(B{C^2} = {25^2} = 625;A{C^2} = {20^2} = 400;A{B^2} = {15^2} = 225\)

\( \Rightarrow B{C^2} = A{C^2} + A{B^2}\)

Do đó, tam giác\(ABC\) là tam giác vuông tại \(A\).

c) Diện tích tam giác \(ABC\) là

\({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.15.20 = 150\left( {c{m^2}} \right)\).

Xét tam giác \(ADB\) và tam giác \(ABC\) ta có:

\(\frac{{BD}}{{BC}} = \frac{{\frac{{75}}{7}}}{{25}} = \frac{3}{7}\) và có chung chiều cao hạ từ đỉnh \(A\). Do đó, diện tích tam giác \(ADB\) bằng \(\frac{3}{7}\) diện tích tam giác \(ABC\).

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = 150.\frac{3}{7} = \frac{{450}}{7}\left( {c{m^2}} \right)\).

Diện tích tam giác \(ACD\) là:

\({S_{ACD}} = {S_{ABC}} - {S_{ADB}} = 150 - \frac{{450}}{7} = \frac{{600}}{7}\)

Vì \(ED//AB \Rightarrow \frac{{CE}}{{AE}} = \frac{{CD}}{{BD}} = \frac{{\frac{{100}}{7}}}{{\frac{{75}}{{100}}}} = \frac{4}{3}\)

Xét tam giác \(ADE\) và tam giác \(DCE\) ta có:

\(\frac{{CE}}{{AE}} = \frac{4}{3}\) và hai tam giác này có chung đường cao hạ từ \(D\).

Do đó, \(\frac{{{S_{ADE}}}}{{{S_{DCE}}}} = \frac{4}{3}\).

Diện tích tam giác \(ADE\) là

\({S_{ADE}} = \frac{{600}}{7}:\left( {3 + 4} \right).4 = \frac{{2400}}{{49}}\left( {c{m^2}} \right)\)

\({S_{DCE}} = \frac{{600}}{7}:\left( {3 + 4} \right).3 = \frac{{1800}}{{49}}\left( {c{m^2}} \right)\).

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 22:25

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=25/7

=>DB=75/7cm; DC=100/7cm

Xét ΔABC có DE//AB

nên DE/AB=CD/CB

=>DE/15=100/7:25=4/7

=>DE=60/7cm

b: Xét ΔABC có BC^2=AB^2+AC^2

nen ΔABC vuông tại A

=>S ABC=1/2*15*20=10*15=150cm2

c: DB/DC=3/7

=>S ABD/S ACB=3/7

=>S ABD=150*3/7=450/7cm2

 

Thảo Nguyễn
Xem chi tiết
Kaylee Trương
Xem chi tiết
Phạm Ngọc Thạch
7 tháng 7 2015 lúc 9:24

a) Ta có: AB2 + AC2 = 202 + 152 = 625

BC2 = 252 = 625

nên AB2 + AC2 = BC2

    Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo

b)    Áp dụng định lí Pitago trong tam giác vuông ACH được:

    HC2 + HA2 = AC2

CH2 = 152 - 122

CH2 = 81

=> CH=9 (cm)

     Áp dụng định lí Pitago trong tam giác vuông AHB được:

                 AH2 + BH2 = AB2

               122 + BH2 = 202

=> BH2 = 202 - 122 = 256

=> BH=16 cm 

Kunzy Nguyễn
7 tháng 7 2015 lúc 9:32

Hình bạn tự kẻ nhé . 

a)  Ta có AB2+AC2 = 202+152= 625

Lại có BC2 = 252 = 625

=> Tam giác ABC vuông ( Py ta go )

b) Ta có AH là đường cao 

=> Tam giác ABH và tam giác ACH vuông tại H

Áp dụng Py ta go vào tam giác vuông ACH ta được :

AC2=CH2+ AH2

=> 152 = CH2 + 122

=> CH2 =  152 - 122 = 81

=> CH = 9 ( cm)

=> BH = BC-CH = 25- 9 = 16  ( cm)