\(B=x^3-3x^2+3x-1\)
tính giá trị của biểu thức tại x=101 , chỉ dc dùng 3 hằng đẳng thức đầu
Tính giá trị của biểu thức = cách vận dụng hằng đẳng thức :
1. A = x^3 + 3x^2 + 3x + 6 với x = 19
2. B = x^3 - 3x^2 + 3x với x = 11
\(A=x^3+3x^2+3x+6\)
\(=x^3+3x^2+3x+1+5\)
\(=\left(x+1\right)^3+5\)
Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:
\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)
Vậy giá trị của biểu thức A tại x = 19 là 8005.
\(B=x^3-3x^2+3x\)
\(=x^3-3x^2+3x-1+1\)
\(=\left(x-1\right)^3+1\)
Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:
\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)
Vậy giá trị của biểu thức B tại x = 11 là 1001.
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
Tính giá giá trị biểu thức bằng cách vận dụng hằng đẳng thức
B=x^3−3x^2+3x với x=11
\(B=x^3-3x^2+3x\)
\(=x^3-3x^21+3x1^2-1^3+1\)
\(=\left(x-1\right)^3+1\)
thay x=11 vào P ta đc:
\(B=\left(11-1\right)^3+1=1001\)
Vậy B=1001
Tính giá trị biểu thức
a) x^2y^2 tại x=87,y-13
b) x^3-3x^2+3x-1 tại x- 101
c) x^3+9x^2+27x+27 tại x= 97
tính nhanh hợp lí, áp dụng các hằng thức đáng nhớ, giải chi tiết
a) x2-y2
= (x-y)x(x+y)
=(87+13)x(87-13)
=100x74
=7400
b) x3-3x2+3x-1
=x3-3x21+3x12-13=(x-1)3
=(101-1)3
=1003
=1000000
c) x3+9x2+27x+27
=x3+3x23+3x32+33
=(x+3)3
=(97+3)3
=1003
=1000000
Bài cũn dễ mà
Áp dụng hằng đẳng thức, tính giá trị biểu thức:
a.A=x^3-3x^2+3x+1012 tại x=11
b.B=x^3-6x^2+12x-108 tại x=12
c.C=x^3+6x^2y+12xy^2+8y^3 tại x=-2y
d.D=x^3+9x^2+27x+2027 tại x=-23
\(...=A=x^3-3x^2+3x-1+1013\)
\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)
\(...B=x^3-6x^2+12x-8-100\)
\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)
\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)
\(...D=x^3+9x^2+27x+9+2018\)
\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)
a) \(A=x^3-3x^2+3x+1012\)
\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)
\(A=\left(x-1\right)^3+1013\)
Thay x=11 vào A ta có:
\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)
b) \(B=x^3-6x^2+12x-108\)
\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)
\(B=\left(x-2\right)^3-100\)
Thay x=12 vào B ta có:
\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)
c) \(C=x^3+6x^2y+12xy^2+8y^3\)
\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)
\(C=\left(x+2y\right)^3\)
Thay x=-2y vào C ta được:
\(C=\left(-2y+2y\right)^3=0^3=0\)
d) \(D=x^3+9x^2+27x+2027\)
\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)
\(D=\left(x+3\right)^3+2000\)
Thay x=-23 vào D ta có:
\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)
Tính giá trị của biểu thức sau:
x^3 - 3x^2 + 3x - 1 tại x = 101
x3 - 3x2 + 3x - 1
=x3-2x2+x-x2+2x-1
=x(x2-2x+1)-(x2-2x+1)
=(x-1)(x2-2x+1)
=(x-1)(x-1)(x-1
=(x-1)3.Thay x=101 vào ta được (101-1)3=1003=1 000 000
Tính giá trị biểu thức bằng cách vận dụng hằng đẳng thức
B=\(x^3-3x^2+3x\)
Bài làm:
Ta có: Tại x = 11 thì giá trị của B là
\(B=x\left(x^2-3x+3\right)=11\left(11^2-3.11+3\right)\)
\(=11.91=1001\)
\(B=x^3-3x^2+3x\)
\(B=x\left(x^2-3x+3\right)\)
thay x = 11 vào biểu thức ta có
\(B=11\left(11^2-3.11+3\right)\)
\(B=11.91=1001\)
Bài 1: Tính
a.(2x+3y)^2-(5x-y)^2
b(x+2/5)^2.(x-2/5)-(2x-y)^2
c.(x+1/4)^2-(2x-3)^3
Bài 2: Tính giá trị biểu thức bằng cách vận dụng hằng đẳng thức
A=x^3+3x^2+3x+6 với x=19
B=x^3-3x^2+3x với x=11
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
Xét hằng đẳng thức, (x+1)3= x3+3x2+3x+1
Lần lượt cho x=1;2;3;...;n rồi cộng từng vế n đẳng thức trên để tính giá trị của biểu thức:
S=12+22+32+...+n2