Tìm x và y biết : 2x2 - 6xy + 9y2 - 6x + 9 =0
bài 1 Tìm x,y sao cho biểu thức A=2x2+9y2−6xy−6x−12y+2024 đạt GTNN. Tìm giá trị đó.
A=2x^2+9y^2-6xy-6x-12y+2024
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995
x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3
\(K\)\(nha!~!\)
Tìm x,y,z thoả mãn: 2x2+9y2+z2+6x(1-y)-8z+25=0
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+\left(x^2+6x+9\right)+\left(z^2-8z+16\right)=0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x+3\right)^2+\left(z-4\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x+3=0\\z-4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\\z=4\end{matrix}\right.\)
Tìm GTNN:
1. G=2x2+9y2-6xy-6x-12y+2021
2. H=2x2+4y2+4xy+4y+9
3. I= x2-4xy+5y2+10x-22y+28
4. K=x2+5y2-4xy+6x-14y+15
tim giá trị x,y (x là số nguyên tố) biết :
x2-6xy+9y2-3x=0
Ta có \(x^2-6xy+9y^2-3x=0\left(1\right)\)
\(\Leftrightarrow3x=\left(x-3y\right)^2⋮3\Rightarrow3x=\left(x-3y\right)^2⋮9\)
\(\Rightarrow x⋮3\)
Mà \(x\) là số nguyên tố nên \(x=3\)
\(\left(1\right)\Leftrightarrow3x=\left(x-3y\right)^2\)
\(\Leftrightarrow9=\left(9-3y\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\)
Thử lại được \(x=3;y=2\)
tính:
a,(x+1)*(x^2-x+1)..
b,:(0.1x+y^2)*(0.01x^2-0.1xy^2+y^4)..
c, (2x+3y)*(4x^2-6xy+9y2)..
d,(3-2x)*(9+6x+4x^2).
e,(1/2x-1/3y)*(1/4x^2+1/6xy+1/9y^2
giải hpt: √2x2+6xy+5y2+5=√2x2+6xy+5y2+14x+20y+52x2+6xy+5y2+5=2x2+6xy+5y2+14x+20y+5
và y^2-y+x^3=0
Tìm các số nguyên x, y biết
\(9x^2+3y^2+6xy-6x+2y-35=0\)
`9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0`
`<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0`
`<=> (3x + y - 1)2 = 37 - 2(y + 1)^2`
Vì `(3x+y=1)^2>=0`
`=>2(y+1)^2<=37`
`=>(y+1)^2<=37/2`
Mà `(y+1)^2` là scp
`=>(y+1)^2 in {0,1,4,8,16}`
`=> y + 1 ∈{0; 1; -1; 2; -2; 3; -3; 4; -4}`
`=>y in {-1,0,-2,1,-3,2,-4,3,-5}`
Đến đây dễ rồi thay y vào rồi tìm x thôi!
Giúp mình 3 câu này với
a) x4 + 3x3 + x2 + 3x
b) x2 + 6xy + 9y2 - 4z2
c) 2x2 - 9x + 7
Cảm ơn các bạn rất nhiều
a)\(x^4+3x^3+x^2+3x=x\left(x^3+3x^2+x+3\right)\)
\(=x\left[x^2\left(x+3\right)+\left(x+3\right)\right]=x\left(x+3\right)\left(x^2+1\right)\)
b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-4z^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)
c) \(=2x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(2x-7\right)\)
\(a,=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x^2+1\right)\left(x+3\right)\\ b,=\left(x+3y\right)^2-4z^2=\left(x+3y+2z\right)\left(x+3y-2z\right)\\ c,=2x^2-2x-7x+7=\left(x-1\right)\left(2x-7\right)\)
\(a)=x^3(x+3)+x(x+3)=(x^2+x)(x+3)=x(x+1)(x+3)\\b)=(x+3y)^2-4z^2=(x+3y-2z)(x+3y+2z)\\c)=2x^2-2x-7x+7=2x(x-1)-7(x-1)=(2x-7)(x-1)\)
Phân tích các đa thức sau thành nhân tử:
a) 4x2-4x+1
b)16y3-2x3-6x(x+1)-2
c)x2-6xy-25z2+9y2
\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)
Xem lại đề ý b