Cho tg ABC vuông tại A, AD là phân giác góc BAC, AE là đường phân giác ngoài của tg ABC tại đỉnh A. Chứng minh
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Cho tam giác ABC vuông tại A có đường phân giác AD. Gọi AE là tia phân giác
góc ngoài của tam giác ABC tại đỉnh A, nó cắt BC ở E. Chứng minh: \(\dfrac{1}{AB^2}\) +\(\dfrac{1}{AC^2}\)= \(\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Kẻ \(AH\perp BC\) tại H
Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\)
Áp dụng hệ thức lượng vào tam giác vuông AED có:
\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)
Vậy...
Cho tam giác ABC vuông tại A có AB=9cm AC=12cm BC=15cm. Kẻ đường cao AH và trung tuyến AO. Tia phân giác trong và ngoài của góc BAC lần lượt cắt BC tại D, E. Chứng minh \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
1. Cho hình chữ nhật ABCD, E là điểm thuộc cạnh AD sao cho BC=BE. Phân giác của góc CBE cắt CD tại F, AB cắt EF tại I. Chứng minh rằng:
a) AB.EI=BC.AE
b) \(\dfrac{1}{AE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\).
c) \(CI\)⊥\(BD\).
2. Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho góc DME bằng góc B. Chứng minh rằng:
a) \(BD.CE=\dfrac{1}{4}BC^2\).
b) DM là phân giác của góc BDE.
c) Chu vi tam giác ADE không đổi khi D, E chuyển động trên cạnh AB và AC.
1.
a) Gọi G là giao của BE và DC.
-Xét △BEF và △BCF có:
\(BE=BC\) (gt).
\(\widehat{EBF}=\widehat{CBF}\) (BF là tia phân giác của \(\widehat{EBC}\)).
\(BF\) là cạnh chung.
=>△BEF = △BCF (c-g-c).
=>\(\widehat{BEF}=\widehat{BCF}=90^0\) (2 góc tương ứng).
=>BG⊥FI tại E.
-Ta có: \(\widehat{GED}+\widehat{EGD}=90^0\) (△DEG vuông tại D).
\(\widehat{EGD}+\widehat{EFD}=90^0\) (△GEF vuông tại E).
=>\(\widehat{GED}=\widehat{EFD}\).
-Xét △GED và △EFD có:
\(\widehat{GED}=\widehat{EFD}\) (cmt)
\(\widehat{GDE}=\widehat{FED}=90^0\)
=>△GED ∼ △EFD (g-g),
=>\(\dfrac{GD}{GE}=\dfrac{ED}{EF}\) (2 tỉ lệ tương ứng) (1).
-Xét △ABE có: AB//GD (ABCD là hình chữ nhật).
=>\(\dfrac{AB}{GD}=\dfrac{BE}{GE}\) (định lí Ta-let).
=>\(\dfrac{AB}{BE}=\dfrac{GD}{GE}\) (2)
-Xét △AEI có: AI//DF (ABCD là hình chữ nhật).
=>\(\dfrac{AE}{DE}=\dfrac{EI}{EF}\) (định lí Ta-let).
=>\(\dfrac{AE}{EI}=\dfrac{DE}{EF}\) (3).
-Từ (1),(2),(3) suy ra: \(\dfrac{AB}{BE}=\dfrac{AE}{EI}\)
=>\(AB.EI=BE.AE\) mà \(BE=BC\) (gt)
=>\(AB.EI=BC.AE\).
b) -Xét △ABE và △EBI có:
\(\widehat{BAE}=\widehat{BEI}=90^0\)
\(\widehat{B}\) là góc chung.
=>△ABE ∼ △EBI (g-g).
=>\(\dfrac{AE}{BE}=\dfrac{EI}{BI}\) (2 tỉ lệ tương ứng).
=>\(AE=\dfrac{EI.BE}{BI}\)
=>\(AE^2=\dfrac{EI^2.BE^2}{BI^2}\)
=>\(\dfrac{1}{AE^2}=\dfrac{BI^2}{EI^2.BE^2}\)
Mà \(BI^2=EI^2+BE^2\) (△BEI vuông tại E).
=>\(\dfrac{1}{AE^2}=\dfrac{EI^2+BE^2}{EI^2.BE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\)
2)
a) -Ta có: \(\widehat{BMD}+\widehat{DME}+\widehat{CME}=180^0\)
\(\widehat{DBM}+\widehat{DMB}+\widehat{BDM}=180^0\) (tổng 3 góc trong △BDM).
Mà\(\widehat{DME}=\widehat{DBM}\left(gt\right)\)
\(\Rightarrow\widehat{CME}=\widehat{BDM}\).
-Xét △BDM và △CME có:
\(\widehat{BDM}=\widehat{CME}\) (cmt).
\(\widehat{DBM}=\widehat{MCE}\) (△ABC cân tại A).
\(\Rightarrow\)△BDM ∼ △CME (g-g).
\(\Rightarrow\dfrac{BD}{BM}=\dfrac{CM}{CE}\) (2 tỉ lệ tương ứng).
Mà \(BM=CM=\dfrac{1}{2}BC\) (M là trung điểm BC).
\(\Rightarrow\dfrac{BD}{\dfrac{1}{2}BC}=\dfrac{\dfrac{1}{2}BC}{CE}\)
\(\Rightarrow BD.CE=\dfrac{1}{4}BC^2\).
b) -Ta có: \(\dfrac{BD}{CM}=\dfrac{DM}{ME}\) (△BDM ∼ △CME)
Mà \(BM=CM\) (M là trung điểm BC).
\(\Rightarrow\dfrac{BD}{BM}=\dfrac{DM}{ME}\)
-Xét △BDM và △MDE có:
\(\widehat{DBM}=\widehat{DME}\left(gt\right)\)
\(\dfrac{BD}{BM}=\dfrac{DM}{ME}\) (cmt).
\(\Rightarrow\)△BDM ∼ △MDE (c-g-c).
\(\Rightarrow\widehat{BDM}=\widehat{MDE}\) (2 góc tương ứng) hay DM là phân giác của \(\widehat{BDE}\).
1. Cho hình chữ nhật ABCD, E là điểm thuộc cạnh AD sao cho BC=BE. Phân giác của góc CBE cắt CD tại F, AB cắt EF tại I. Chứng minh rằng:
a) AB.EI=BC.AE
b) \(\dfrac{1}{AE^2}=\dfrac{1}{BE^2}+\dfrac{1}{EI^2}\)
c) \(CI\)⊥\(BD\)
2. Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho góc DME bằng góc B. Chứng minh rằng:
a) \(BD.CE=\dfrac{1}{4}BC^2\)
b) DM là phân giác của góc BDE.
c) Chu vi tam giác ADE không đổi khi D, e chuyển động trên cạnh AB và AC
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)
Qua D kẻ đường thẳng song song với AB cắt AC tại E.
Dễ thấy tam giác AED vuông cân tại E nên \(\dfrac{AD}{\sqrt{2}}=AE=ED\).
Theo định lý Thales ta có: \(\dfrac{DE}{AB}=\dfrac{CE}{CA}=1-\dfrac{AE}{CA}=1-\dfrac{DE}{CA}\Rightarrow\dfrac{1}{DE}=\dfrac{1}{AB}+\dfrac{1}{AC}\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\).
Vậy ta có đpcm.
Cho tam giác ABC vuông tại A có AB=c, AC=b và đường phân giác của góc A là AD=d. CM: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{\sqrt{2}}{d}\)
Cho tam giác ABC vuông tại A , có AB=3cm , AC=4cm , đường cao AH (H\(\in\)BC )
1)Tính BC ,AH
b) Kẻ đường phân giác AI của góc BAC (I\(\in\)BC) .Tính BI , CI
c) Chứng minh : \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AI}\)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
cho tam giác ABC có góc A=60 độ,AD là phân giác của góc A.chứng minh \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{\sqrt{3}}{AD^2}\)
Cho tg ABC vg tại A, có AB= 27cm, AC=36cm
a) Tính số đo góc nhọn trg tg ABC ( làm tròn tới độ )
b) Vẽ đường thẳng vuông góc vs BC tại B, đg thẳng này cát tia CA tại giao điểm D. Tính AD?
c) Vẽ điểm E đối xứng với A qua đường thẳng BC. Ko tính độ dài đoạn AE, chứng minh \(\frac{1}{AE^2}=\frac{1}{4AB^2}+\frac{1}{4AC^2}\)
d) Trên nửa mặt phẳng có bờ BC ko chứa điểm A, lấy M sao cho tg MBC vg cân tại M. CM AM là tia phân giác của góc BAC