Tìm giá trị lớn nhất
a) A= 8a-8a2
b) B= b-\(\frac{9b^2}{25}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất
a, A = y - 2x + 5 với 36x2 + 16y2 = 9
b, B = 2x - y - 2 với \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
Bài 1: Tìm giá trị lớn nhất của biểu thức sau:
a) \(A=8a-8a^2+3\)
b) \(B=b-\frac{9b^2}{25}\)
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
a) \(C=\frac{1}{16}c^2-9c+10\)
b) \(D=d^2+10e^2-6de-10e+26\)
c) \(E=4x^4+12x^2+11\)
1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)
Vậy Amax = 5 <=> a = 1/2
b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)
Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)
Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)
Vậy Bmax = 25/36 <=> b = 25/18
a,\(A=8a-8a^2+3\)
\(=-8\left(a^2-a\right)+3\)
\(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)
\(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)
\(=-8\left(a-\frac{1}{2}\right)^2+2+3\)
\(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\)
Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)
Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)
bài 2:
b,\(D=d^2+10e^2-6de-10e+26\)
\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)
\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)
Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)
vậy \(D_{min}=1\)khi \(d=15;e=5\)
c,:\(E=4x^4+12x^2+11\)
\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)
\(=\left(2x^2+3\right)^2+2\ge2\forall x\)
còn 1 đoạn nx bạn tự lm tiếp,lm giống như D
2. a. \(C=\frac{1}{16}c^2-9c+10=\frac{1}{16}\left(x-72\right)^2-314\)
Vì \(\left(x-72\right)^2\ge0\forall x\)\(\Rightarrow\frac{1}{16}\left(x-72\right)^2-314\ge-314\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16}\left(x-72\right)^2=0\Leftrightarrow x-72=0\Leftrightarrow x=72\)
Vậy Cmin = - 314 <=> x = 72
b. \(D=d^2+10e^2-6de-10e+26=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)
\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\)
Vì \(\left(d-3e\right)^2\ge0;\left(e-5\right)^2\ge0\forall d;e\)\(\Rightarrow\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}d-3e=0\\e=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}\)
Vậy Dmin = 1 <=> d = 15 ; e = 5
c. \(E=4x^4+12x^2+11=\left(2x^2+3\right)^2+2\)
Vì \(\left(2x^2+3\right)^2\ge0\forall x\)\(\Rightarrow\left(2x^2+3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+3\right)^2=0\Leftrightarrow2x^2+3=0\Leftrightarrow x^2=-\frac{3}{2}\left(vo-ly\right)\)
Không thể xảy ra dấu "=" trong th này
Vậy để Emin thì \(\left(2x^2+3\right)^2_{min}=\left(3^2\right)=9\Leftrightarrow2x^2=0\Leftrightarrow x=0\)
Vậy Emin = 9 + 2 = 11 <=> x = 0
Tìm giá trị lớn nhất của các biểu thức sau:
a) A=8a-8a2+3
b) B=b-\(\dfrac{9b^2}{25}\)
a,8a-8a2+3
=-8(a2-a)+3
=-8[a2-2a\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)-\(\dfrac{1}{4}\)]+3
=-8[(a-\(\dfrac{1}{2}\))2-\(\dfrac{1}{4}\)]+3
=-8(a-\(\dfrac{1}{2}\))2+2+3
=-8(a-\(\dfrac{1}{2}\))2+5
mà (a-\(\dfrac{1}{2}\))2\(\ge\)0
=>-8(a-\(\dfrac{1}{2}\))2\(\le\)0
=>-8(a-\(\dfrac{1}{2}\))2+5\(\le\)5
=> Gía trị lớn nhất biểu thức trên đạt được là 5( khi (a-\(\dfrac{1}{2}\))2=0\(\Leftrightarrow\)a=\(\dfrac{1}{2}\))
cho a,b thỏa mãn \(\frac{a^2+b^2}{a-2b}=2\)
tìm giá trị lớn nhất của biểu thức P = 8a+4b
Cho 3 số thực dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Áp dụng BĐT Bunhiacopxky :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)
\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)
\(P\le\frac{2}{3}+ab+bc+ac\)
Theo hệ quả quen thuộc của BĐT AM - GM :
\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)
Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)
tìm giá trị lớn nhất
A=12x-3x^2
=-3x^2+12x-12+12
=-3(x^2-4x+4)+12
==-3(x-2)^2+12<=12
Dấu = xảy ra khi x=2
Tìm giá trị nhỏ nhất
a)A=4x2-4x+23
b)B=25x2+y2+10x-4y+2
a) \(A=4x^2-4x+23\)
\(A=4x^2-4x+1+22\)
\(A=\left(2x-1\right)^2+22\)
Mà: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(2x-1\right)^2+22\ge22\forall x\)
Dấu "=" xảy ra:
\(2x-1=0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy: \(A_{min}=22\Leftrightarrow x=\dfrac{1}{2}\)
b) \(B=25x^2+y^2+10x-4y+2\)
\(B=25x^2+10x+1+y^2-4y+4-3\)
\(B=\left(5x+1\right)^2+\left(y-2\right)^2-3\)
Mà: \(\left\{{}\begin{matrix}\left(5x+1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow B=\left(5x+1\right)^2+\left(y-2\right)^2-3\ge-3\forall x,y\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}5x+1=0\\y-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=-1\\y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=-3\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=2\end{matrix}\right.\)
Tìm giá trị lớn nhất hoặc nhỏ nhất
A = -2x^2 - 5x + 3
Ta có: \(A=-2x^2-5x+3\)
\(=-2\left(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\)
Ta có: \(\left(x+\dfrac{5}{4}\right)^2\ge0\forall x\)
\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2\le0\forall x\)
\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{5}{4}=0\)
hay \(x=-\dfrac{5}{4}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=-2x^2-5x+3\) là \(\dfrac{49}{8}\) khi \(x=-\dfrac{5}{4}\)
Tìm số tự nhiên a để biểu thức sau có giá trị lớn nhất
A= 2020 + 240: ( a-5)
Nếu ta muốn tìm được giá trị lớn nhất của biểu thức \(A=2020+240:\left(a-5\right)\)thì phép tính trong ngoặc của vế \(240:\left(a-5\right)\) phải có giá trị bé nhất có thể nhưng phải khác \(0\) :
Ta gọi:
\(a\) là số bị trừ
\(5\) là số trừ
\(x\) là hiệu
\(x\) tìm được phải nhỏ nhất nhưng khác \(0\)
Nên:Gía trị nhỏ nhất của \(x\) là \(=1\)
Ta phải tìm số bị trừ nào \(-5=1\) mà muốn tìm số bị trừ ta lấy hiệu \(+\) số trừ
Ta có:\(1+5=6\)
Từ đó suy ra:
\(=>a=6\)
Lời giải:
Để $A$ lớn nhất thì $a-5$ phải là số tự nhiên khác 0 nhỏ nhất
$\Rightarrow a-5=1$
$\Rightarrow a=6$