tính
-x^2+2xy-y^2+4
cho x^2+2xy+2y^2=1 tính x^4+y^4+(x+y)^4
cho x^2+2xy+2y^2=1 tính x^4+y^4+(x+y)^4
Thực hiện phép tính
x^2/[(x-y)^2(x+y)] - 2xy^2/(x^4-2x^2y^2+y^4)+y^2/[(x^2-y^2)(x+y)]
giúp mk với nhé
sáng mai nộp rồi
ai nhanh tay mk sẽ k cho
Tính giá trị biểu thức
a) 3x²y-2xy²+4-x²y-2x²y tại x=-2;y=⅓
b) x²+2xy-3x³ +2y³+3y³-y³ tại x=5;y=4
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2
Cho đa thức : A= \(31x^2\)\(y^3\)\(-2xy^3+\dfrac{1}{4}x^2y^2+2\) và
B=\(2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
a . tính A+B và A-B
b. Tính giá trị của đa thức A + B tại x=6 và y=\(\dfrac{-1}{3}\)
c. Tìm x,y E Z để A+B = -4
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
Thực hiện phép tính:
a/(x^2+y^2-2xy)+(x^2+y^2 +2xy)
b/(x^2+y^2-2xy) - (x^2+y^2+2xy)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
tính
(2x+y).(4\(\text{x}^{\text{2}}\)-2xy+\(\text{y}^{\text{2}}\))
Có: (2x + y)(4x2 - 2xy + y2) = 8x3 + y3
Lời giải:
Ta có: (2x + y)(4x2 - 2xy + y2)
= 2x(4x2 - 2xy + y2) + y(4x2 - 2xy + y2)
= 8x3 - 4x2y + 2xy2 + 4x2y - 2xy2 + y3
= 8x3 + y3.
Tính giá trị của biểu thức x^2 + 2xy + y^2 tại y = 4 y = 3
Ta có : `x^2+2xy+y^2=(x+y)^2`
Tại `x=4;y=3` ta có : `(x+y)^2 =(4+3)^2=7^2=49`
Cho \(A = {x^2}y + 2xy - 3{y^2} + 4\). Tính giá trị của biểu thức A khi x = -2, y = 3.
\(A = {x^2}y + 2xy - 3{y^2} + 4\)
Thay các x = -2 và y = 3 vào công thức ta có :
\(\begin{array}{l}A = {( - 2)^2}.3 + 2( - 2).3 - {3.3^2} + 4\\ = 4.3 - 12 - 27 + 4\\ = - 23\end{array}\)
thực hiên phép tính
a.\(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)
b.\(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)
a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\) = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\) =\(\dfrac{x+y}{4}\)
a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)
\(=\dfrac{x+y}{4}\)
b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}\)
a) Ta có: \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)
\(=\dfrac{x+y}{4}\)
b) Ta có: \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)
\(=\dfrac{x+5-4}{2\left(x-1\right)}\)
\(=\dfrac{x+1}{2x-2}\)