Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Anh
Xem chi tiết
Nii-chan
Xem chi tiết
Nguyễn Hải Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 14:06

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

Dương Bảo Yến
Xem chi tiết
Hoàng Ninh
28 tháng 8 2021 lúc 13:24

\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)

\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)

\(=-3x^2-14x-3\)

\(=-3\left(x^2+\frac{14}{3}x+\frac{49}{9}\right)+\frac{40}{3}\)

\(=-3\left(x+\frac{7}{3}\right)^2\le0\forall x\) 

Dau '' = '' xay ra \(\Leftrightarrow x=\frac{-7}{3}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
28 tháng 8 2021 lúc 13:35

\(F=\left(x-1\right)^2-\left(2x+3\right)^2+5\)

\(=x^2-2x+1-\left(4x^2+12x+9\right)+5\)

\(=-3x^2-14x-3=-3\left(x^2+\frac{14}{3}x\right)-3\)

\(=-3\left(x^2+2.\frac{7}{3}x+\frac{49}{9}-\frac{49}{9}\right)-3\)

\(=-3\left(x+\frac{7}{3}\right)^2+\frac{40}{3}\le\frac{40}{3}\)

Dấu ''='' xảy ra khi x = -7/3 

Vậy GTLN của F bằng 40/3 tại x = -7/3 

Khách vãng lai đã xóa
huong nguyen
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Linh Chi
18 tháng 12 2019 lúc 16:51

Ta có:

 \(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)

\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)

=> max A = 1 tại x = 1

\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)

\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)

=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2

Vậy...

Khách vãng lai đã xóa
Minh Hoàng Phan
Xem chi tiết
Yeutoanhoc
19 tháng 5 2021 lúc 22:08

`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A<=11+4=15`
Dấu "=" xảy ra khi `x=-2

Minh Hoàng Phan
19 tháng 5 2021 lúc 21:56

mng giúp em với ạ

 

Yeutoanhoc
19 tháng 5 2021 lúc 22:02

`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A>=11+4=15`
Dấu "=" xảy ra khi `x=-2`

dũng nguyễn đăng
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 9 2021 lúc 10:40

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

Nguyễn Hồng Ngọc
Xem chi tiết
Mai Anh
4 tháng 2 2022 lúc 11:56

Ta có: `(2x -3)(5-x) `

`= 10x - 2x^2 - 15 + 3x`

`= -2x^2 + 13x - 15`

`= -2(x^2 -13/2 x +15/2)`

`= -2[(x^2 - 2x . 13/4+ 169/16) -49/16]`

`= -2[(x-13/4)^2 - 49/16]`

`= -2(x-13/4)^2 +49/8`

Vì `(x-13/4)^2 ge 0` với mọi `x`

`<=> -2x(x-13/4)^2 le 0` với mọi `x`

`<=> -2x(x-13/4)^2 + 49/8 le 49/8` với mọi `x`

Dấu "=" xảy ra khi: `x-13/4 =0 <=> x= 13/4`

Vậy giá trị lớn nhất của biểu thức là `49/8` khi `x= 13/4`

 

Trần Đức Huy
4 tháng 2 2022 lúc 12:01

(2x-3)(5-x)=\(10x-2x^2-15+3x=-2x^2+13x-15=-2x^2+13x-\dfrac{169}{8}+\dfrac{169}{8}=-\left(2x^2-13x+\dfrac{169}{9}\right)+\dfrac{169}{8}=-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2+\dfrac{169}{8}\)

Ta có \(\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2\ge0=>-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)\le0=>\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)+\dfrac{169}{8}\le\dfrac{169}{8}\)