Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhung_123
Xem chi tiết
Mr Lazy
15 tháng 8 2015 lúc 17:43

Hàm bậc 2 với hệ số a < 0 thì đồng biến trên \(\left(-\infty;-\frac{b}{2a}\right)\), nghịch biến trên \(\left(-\frac{b}{2a};+\infty\right)\)

Đồng biến trên \(\left(-\infty;1\right)\)

Nghịch biến trên \(\left(1;+\infty\right)\)

 

Khánh Đào
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 17:48

\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)

\(\Rightarrow\) Hàm đồng biến trên R

Minh Ngọc
Xem chi tiết
Hoàng Tử Hà
18 tháng 4 2021 lúc 20:55

1/ \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+1\right)=f\left(2\right)=3\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\lim\limits_{x\rightarrow2^-}\dfrac{x-1}{x^2+2x+4}=\dfrac{1}{12}\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(2\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)

=> ham so gian doan tai x=2

2/ \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=2a-1\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{3x-2-4}{\left(x-2\right)\left(\sqrt{3x-2}+2\right)}=\lim\limits_{x\rightarrow2^+}\dfrac{3}{\sqrt{3x-2}+2}=\dfrac{3}{4}\)

De ham so lien tuc tai x=2

\(\Leftrightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)\Leftrightarrow2a-1=\dfrac{3}{4}\Leftrightarrow a=\dfrac{7}{8}\)

Khánh Đào
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 19:48

\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2018 lúc 10:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2019 lúc 6:06

Quan sát bảng biến thiên ta thấy phương trình này có 2 nghiệm.

Chọn D

YoongG Min
Xem chi tiết
Minh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 21:41

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

Đào Khánh
Xem chi tiết
Akai Haruma
25 tháng 3 2021 lúc 19:49

Lời giải:

$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.

BBT:

undefined

Từ BBT suy ra điểm cực tiêu là $x=0$