\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị
Đúng 3
Bình luận (0)
Môn học
Chủ đề / Chương
Bài học
Chủ đề
Cho hàm số f(x) có đạo hàm f'(x) = \(x\left(x-1\right)^2\) \(x\in R\) . Số điểm cực trị của hàm số là
A:2
B:0
C:1
D:3
(kẻ bảng biến thiên cho dễ hiểu)
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị