cho x,y,z>0 chứng minh rằng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Cho ba số x, y, z không âm. Chứng minh rằng \(x+y+z\ge-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}\)
Đề lạ thế bạn ơi! Vế trái luôn không âm mà vế phải luôn không dương nên đây là điều hiển nhiên.
Mình nghĩ đề phải chứng minh thế này:
\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Nếu thế thì cách làm như sau:
Ta có: Do x, y, z không âm nên:
\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(\sqrt{y}-\sqrt{z}\right)^2\ge0\\\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2\sqrt{xy}\ge0\\y+z-2\sqrt{yz}\ge0\\z+x-2\sqrt{xz}\ge0\end{matrix}\right.\)
\(\Rightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)
Cho x,y,z là các số thực dương thỏa mãn xy + yz + zx = xyz
Chứng minh rằng : \(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)
Ta có:
\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)
\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)
\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)
Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:
\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)
\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)
Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)
Từ (1), (2) và (3), ta được:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)
Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).
\(\)
Cho x, y, z >0 thỏa x + y + z >= 3. Chứng minh rằng : \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Dễ dàng chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)
Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)(3)
Chứng mih tương tự, ta được;
\(y+z\ge2\sqrt{yz}\)(4);
\(z+x\ge2\sqrt{zx}\)(5)
Từ (3), (4), (5), ta được:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)
Mà theo đề bài, \(x+y+z\ge3\) nên:
\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)
Từ (2) và (6), ta được:
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
\(\frac{x^2}{x+\sqrt{yz}}+\frac{x+\sqrt{yz}}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)
Tượng tự ta có : \(\frac{y^2}{y+\sqrt{xz}}+\frac{y+\sqrt{xz}}{4}\ge y\)
\(\frac{z^2}{z+\sqrt{xy}}+\frac{z+\sqrt{xy}}{4}\ge z\)
Cộng vế với vế của BĐT ta được :
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}+\frac{x+\sqrt{yz}}{4}+\frac{y+\sqrt{xz}}{4}+\frac{z+\sqrt{xy}}{4}\ge x+y+z\)
\(VT\ge x+y+z-\frac{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{4}\)
mà \(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)
\(VT\ge\frac{4\left(x+y+z\right)-2\left(x+y+z\right)}{4}=\frac{2\left(x+y+z\right)}{4}\)
mà \(x+y+z\ge3\)hay \(VT\ge=\frac{6}{4}=\frac{3}{2}\)
Dấu ''='' xảy ra <=> x = y = z = 1
cho x,y,z>0 thoả mãn x2+y2+z2=3. Chứng minh rằng:
\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)
\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)
\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Dấu "=" <=> x=y=z=1
Cho ba số x, y, z không âm. Chứng minh: \(x+y+z\ge-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}\)
cho ba số x>y>z>0 khôn âm.Chứng minh x+y+z\(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Do \(x>y>z>0\), nên ta có:
\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\) (bất đẳng thức Cô-si)
Cộng ba bất đẳng thức theo từng vế, ta được:
\(x+y+y+z+x+z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{xz}\)
\(\Leftrightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) (điều phải chứng minh).
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm, ta có:
$x+y\geq 2\sqrt{xy}$
$y+z\geq 2\sqrt{yz}$
$z+x\geq 2\sqrt{zx}$
$\Rightarrow x+y+y+z+z+x\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})$
$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{zx}$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$
Cho các số thực dương x2 + y2 + z2 = 3
Chứng minh rằng : \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)
\(\geq \frac{(x+y+z)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\) (1)
Áp dụng BĐT Am-Gm:
\(\sqrt[3]{x^3yz}\leq \frac{x^2+xyz+1}{3}; \sqrt[3]{y^3xz}\leq \frac{y^2+xyz+1}{3}; \sqrt[3]{z^3xy}\leq \frac{z^2+xyz+1}{3}\)
\(\Rightarrow \sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\leq \frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)
Theo BĐT AM-GM:
\(x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}\Leftrightarrow 3\sqrt[3]{x^2y^2z^2}\leq 3\Leftrightarrow xyz\leq 1\)
Do đó: \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\leq 3\) (2)
Từ (1),(2) và sử dụng hệ quả \(x^2+y^2+z^2\geq xy+yz+xz\) :
\(\Rightarrow \text{VT}\geq \frac{(x+y+z)^2}{3}=\frac{x^2+y^2+z^2+2(xy+yz+xz)}{3}\geq \frac{3(xy+yz+xz)}{3}=xy+yz+xz\)
Ta có đpcm
Dấu bằng xảy ra khi \(x=y=z=1\)
Áp dụng BĐT AM-GM ta có:
\(VT\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}\)
Cần chứng minh \(\dfrac{9x}{y+z+1}+\dfrac{9y}{x+z+1}+\dfrac{9z}{x+y+1}\ge3\left(xy+yz+xz\right)\)
Cauchy-Schwarz: \(VT=\dfrac{9x^2}{xy+xz+x}+\dfrac{9y^2}{xy+yz+y}+\dfrac{9z^2}{xz+yz+z}\)
\(\ge\dfrac{9\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\left(x+y+z\right)^2\)
BĐT cuối đúng vì dễ thấy: \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Cho các số thực dương\(x^2+y^2+z^2=3\)
Chứng minh rằng : \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
Áp dụng BĐT Cauchy - Schwarz ta có :
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)
\(\ge\frac{\left(x+y+z\right)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\left(1\right)\)
Áp dụng BĐT : AM - GM :
\(\sqrt[3]{x^3yz}\le\frac{x^2+xyz+1}{3};\sqrt[3]{y^3xz}\le\frac{y^2+xyz+1}{3};\sqrt[3]{z^3xy}\le\frac{z^2+xyz+1}{3}\)
\(\Rightarrow\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le\frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)
Theo BĐT AM - GM :
\(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow3\sqrt[3]{x^2y^2z^2}\le3\Leftrightarrow xyz\le1\)
Do đó : \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le3\left(2\right)\)
Tư (1) , (2) và sử dụng hệ quả :
\(x^2+y^2+z^2\ge xy+yz+zx:\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{3}=\frac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{3}\ge\frac{3\left(xy+yz+xz\right)}{3}\)\(=xy+yz+xz\)
Ta có đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)