Phân tích đa thức thành nhân tử:
1. x2 - 4 - 6xy + 9y2
2. 9a2 + 6ab + b2 - 49x2
3. b4 + 4a4
Phân tích đa thức thành nhân tử:
4a4 + b4
\(=4a^4+4a^2b^2+b^4-4a^2b^2\\ =\left(2a^2+b^2\right)^2-\left(2ab\right)^2\\ =\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)
\(4a^4+b^4\)
\(=\left(2a^2\right)^2+\left(b^2\right)^2\)
\(=\left[\left(2a^2\right)^2+4a^2b^2+\left(b^2\right)^2\right]-4a^2b^2\)
\(=\left[2a^2+b^2\right]^2-\left(2ab\right)^2\)
\(=\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)
Phân tích đa thức thành nhân tử
A= x2+7x+7y-y2
B= 4x3-4x2+x
C= x2+9y2-9-6xy
\(A=x^2-y^2+7x+7y\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
\(B=4x^3-4x^2+x\)
\(=x\left(4x^2-4x+1\right)\)
\(=x\left(2x-1\right)^2\)
\(C=x^2-6xy+9y^2-9\)
\(=\left(x-3y\right)^2-9\)
\(=\left(x-3y-3\right)\left(x-3y+3\right)\)
A=\(x^2+7x+7y-y^2=\left(x^2-y^2\right)+\left(7x+7y\right)=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)=\left(x+y\right)\left(x-y+7\right)\)
B=\(4x^3-4x^2+x=x\left(4x^2-4x+1\right)=x\left(2x-1\right)^2\)
C=\(x^2+9y^2-9-6xy=\left(x^2-6xy+9y^2\right)-9=\left(x-3y\right)^2-3^2=\left(x-3y-3\right)\left(x-3y+3\right)\)
phân tích đa thức thành nhân tử
b) xy-3x-2y+6
c) x2-6xy-4z2+9y2
\(xy-3x-2y+6=x\left(y-3\right)-2\left(y-3\right)=\left(y-3\right)\left(x-2\right)\)
\(x^2-6xy-4z^2+9y^2=\left(x-3y\right)^2-\left(2z\right)^2=\left(x-3y-2z\right)\left(x-3y+2z\right)\)
b: Ta có: \(xy-3x-2y+6\)
\(=x\left(y-3\right)-2\left(y-3\right)\)
\(=\left(y-3\right)\left(x-2\right)\)
c: Ta có: \(x^2-6xy+9y^2-4z^2\)
\(=\left(x-3y\right)^2-4z^2\)
\(=\left(x-3y-2z\right)\left(x-3y+2z\right)\)
Phân tích đa thức thành nhân tử:
a)x2-4xy+x-4y
b)x2-6xy+9y2-4
c)x3-4x2-12x+27
a) = (x - 4y)(x + 1)
b) = (x - 3y)^2 - 2^2
= (x - 3y - 2)(x - 3y + 2)
c) = x^2(x + 3) - 7x(x + 3) + 9(x + 3)
= (x + 3)(x^2 - 7x + 9)
a: \(x^2-4xy+x-4y\)
\(=x\left(x-4y\right)+\left(x-4y\right)\)
\(=\left(x-4y\right)\left(x+1\right)\)
b: \(x^2-6xy+9y^2-4\)
\(=\left(x-3y\right)^2-4\)
\(=\left(x-3y-2\right)\left(x-3y+2\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 4x2-4x+1
b)16y3-2x3-6x(x+1)-2
c)x2-6xy-25z2+9y2
\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)
Xem lại đề ý b
Bài 1: (2,0 điểm) Phân tích các đa thức sau thành nhân tử:
a) 5x2y3 25x3y4 10x3y3
b) xy 3x 2y 6
c) x2 6xy 4z2 9y2
b: Ta có: \(xy-3x-2y+6\)
\(=x\left(y-3\right)-2\left(y-3\right)\)
\(=\left(y-3\right)\left(x-2\right)\)
Câu 1.(1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) 15x – 5xy b) (x2 + 1)2 – 4x2 c) x2 – 10x – 9y2 + 25
\(a,15x-5xy\\ =5x\left(3-y\right)\\ b,\left(x^2+1\right)^2-4x^2\\ =\left(x^2-x+1\right)\left(x^2+x+1\right)\\ c,x^2-10x-9y^2+25\\ =\left(x-5\right)^2-9y^2\\ =\left(x-9y-5\right)\left(x+9y-5\right)\)
a) 5x(3 - y)
b) (x2 - x + 1)(x2 + x + 1)
c) (x - 9y - 5)(x + 9y - 5)
Câu 1. (1,5 điểm) Phân tích các đa thức sau thành nhân tử.
a) x2 -5x
b) (x + 3y ) 2 - 9y2
c) x2 + xy - 3x -3y
a) \(=x\left(x-5\right)\)
b) \(=\left(x+3y-3y\right)\left(x+3y+3y\right)=x\left(x+6y\right)\)
c) \(=x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)\left(x-3\right)\)
b4 phân tích đa thành nhân tử
a 3x2 -6xy + 3x2 -12z2
b x2 - xy + x-y
c x2 -2x -15
d 2x2 + 3x-5
=((
b, (\(x^2\) - \(xy\) ) + (\(x-y\))
= (\(x-y\)).\(x\) + (\(x-y\))
= (\(x-y\)).(\(x\) + 1)
c, \(x^2\) - 2\(x\) - 15
= (\(x^2\) - 2\(x\) + 1) - 16
= (\(x\) - 1)2 - 42
= (\(x-1-4\)).(\(x-1+4\))
= (\(x-5\)).(\(x+3\))
d, 2\(x^2\) + 3\(x\) - 5
= 2\(x^2\) - 2 + 3\(x\) - 3
= 2.(\(x^2\) - 1) + 3.(\(x-1\))
= 2.(\(x-1\)).(\(x\) + 1) + 3.(\(x-1\))
= (\(x-1\)).(2\(x\) + 2 + 3)
= (\(x\) -1).(2\(x\) + 5)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)