Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
13 tháng 9 2023 lúc 21:58

a) Vì \(K\)là giao điểm của \(AF\) và \(DC\) nên \(K \in CD\).

Vì \(ABCD\) là hình thang nên \(AB//CD \Rightarrow AB//CK\).

Xét tam giác \(ABF\) có \(CK//AB\) ta có:

\(\frac{{FA}}{{FK}} = \frac{{FB}}{{FC}}\) (hệ quả của định lí Thales)

Mà \(F\) lần lượt là trung điểm \(BC\) nên \(\frac{{FB}}{{FC}} = 1 \Rightarrow \frac{{FA}}{{FK}} = 1 \Rightarrow FA = FK\)

Xét tam giác \(ABF\) và tam giác \(KCF\) có:

\(FB = FC\) (chứng minh trên)

\(FK = FA\) (chứng minh trên)

\(\widehat {{F_1}} = \widehat {{F_2}}\)

Do đó, tam giác \(ABF\) bằng tam giác \(KCF\) (c – g – c).

b) Vì \(E\) là trung điểm của \(AD\);\(F\) là trung điểm của \(BC\) nên \(EF\) là đường trung bình của tam giác \(ADK\).

Do đó, \(EF//DK\) (tính chất)\( \Rightarrow EF//DC\)

Mà \(AB//CD \Rightarrow EF//AB//CD\) (điều phải chứng minh).

c) Vì \(EF\) là đường trung bình của tam giác \(ADK\) nên \(EF = \frac{1}{2}DK\).

Tam giác \(ABF\) bằng tam giác \(KCF\) nên \(AB = CK\) (hai cạnh tương ứng)

Ta có: \(DK = DC + CK \Rightarrow DK = DC + AB\).

Do đó, \[EF = \frac{1}{2}DK = \frac{1}{2}\left( {DC + AB} \right) = \frac{{DC + AB}}{2}\] (điều phải chứng minh).

Nguyễn Mai Khánh Ngọc
Xem chi tiết
Thanh Bình
Xem chi tiết
Ly Vũ
Xem chi tiết
Công Chúa Song Song
Xem chi tiết
Trần Văn Đức
31 tháng 10 2021 lúc 16:04

undefined

a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD

⇒EK//BC mà HF⊥BC(gt) 

⇒HF⊥EK.

 Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD

⇒FK//AD mà EH⊥AD(gt)

⇒EH⊥FK.

Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H 

Do đó H là trực tâm của ΔEFK.

b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD

⇒IE//AB//CD (1)

Và IF là đường trung bình của ΔACD⇒IF//DC   (2)

Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.

Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.

Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.

Khách vãng lai đã xóa
Luu Quynh nhu
Xem chi tiết
MonaLancaster
Xem chi tiết
Nu Ngoc
Xem chi tiết
Ben 10
12 tháng 9 2017 lúc 21:36

[​IMG]
a) ED là đường TB ⇒ED//BC⇒EDBC⇒ED//BC⇒EDBC là hbh
b) Ta có EM là đường TB của ΔABNΔABN
⇒EM//AN⇒EM//KN⇒EM//AN⇒EM//KN
Vì N là trung điểm MC ⇒K⇒K là trung điểm EC
c) C/m tương tự được I là trung điểm BD
Ta có OI=OB2OI=OB2 (O là giao điểm trung tuyến , quên đưa vào hình )
DI=3OB4DI=3OB4
OI=OB4OI=OB4
Chưng minh tương tự được OK=OC4OK=OC4
Vì OIOB=OKOC=14OIOB=OKOC=14
⇒IK//BC⇒IKBC=14⇒IK//BC⇒IKBC=14
 

tuan tran
Xem chi tiết