Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nhật Hoàng
Xem chi tiết
Khôi Bùi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2022 lúc 1:08

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)

\(\Rightarrow x^2+yz\le xy+xz\)

\(\Rightarrow zx^2+yz^2\le xyz+xz^2\)

\(\Rightarrow P\le x^3+y^3+z^3+8\left(xy^2+xz^2+xyz\right)\)

\(\Rightarrow P\le x^3+y^3+z^3+3yz\left(y+z\right)+8\left(xy^2+xz^2+2xyz\right)\)

\(\Rightarrow P\le x^3+\left(y+z\right)^3+8x\left(y+z\right)^2\)

\(\Rightarrow P\le x^3+\left(4-x\right)^3+8x\left(4-x\right)^2\)

\(\Rightarrow P\le8x^3-52x^2+80x+64\)

Tới đây, đơn giản nhất là khảo sát hàm \(f\left(x\right)=8x^3-52x^2+80x+64\) trên \(\left[0;4\right]\)

(Nếu ko khảo sát hàm, ta có thể tách như sau, tất nhiên là dựa trên điểm rơi có được từ việc khảo sát hàm):

\(\Rightarrow P\le\left(8x^3-52x^2+80x-36\right)+100\)

\(\Rightarrow P\le4\left(x-1\right)^2\left(2x-9\right)+100\)

Do \(0\le x\le4\Rightarrow2x-9< 0\Rightarrow P\le100\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;3;0\right)\) và 1 vài bộ hoán vị của chúng

Hà Phương
Xem chi tiết
Mr Lazy
10 tháng 7 2015 lúc 23:10

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)=3\left(xy+yz+zx\right)\)

Áp dụng Côsi: 

\(xy+zx\ge2\sqrt{xy.zx}=2x\sqrt{yz}\)

Tương tự: \(xy+yz\ge2y\sqrt{zx};\text{ }yz+zx\ge2z\sqrt{xy}\)

\(\Rightarrow2\left(xy+yz+zx\right)\ge2\left(x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge3\left(x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)

Nguyễn Văn Quang
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 14:14

a/ \(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

b/ \(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z=1\)

c/ BĐT sai

Phan Thị Hà Vy
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 8:42

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

Khách vãng lai đã xóa
Nguyễn Quang Linh
Xem chi tiết
Tuấn Anh Phạm
8 tháng 8 2017 lúc 22:59

sao lại có cả trên 2 vậy

nhân vế trái với 2 là tạo ra cả 3 hàng đẳng thức rồi mà chắc bạn nhầm đâu đó rồi

💥Hoàng Thị Diệu Thùy 💦
Xem chi tiết
Phạm Thị Thùy Linh
31 tháng 7 2019 lúc 12:44

\(x^2+y^2+z^2\ge xy-xz+yz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy-2xz+2yz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy+2xz-2yz\ge0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(z^2-2yz+y^2\right)\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(x+z\right)^2+\left(z-y\right)^2\ge0\)( luôn đúng )

\(\Rightarrow x^2+y^2+z^2\ge xy-xz+yz\)( đúng với mọi x,y,z )

Dấu bằng sảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+z\right)^2=0\\\left(z-y\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x+z=0\\z-y=0\end{cases}\Rightarrow\hept{\begin{cases}y=x\\x+z=0\\y=z\end{cases}}}}\)

\(\Rightarrow\hept{\begin{cases}x+z=0\\x=z\end{cases}\Rightarrow x=y=z=0}\)

Nguyễn Văn Kiệt
Xem chi tiết
Vũ Thị Minh Nguyệt
22 tháng 5 2017 lúc 20:19

a/ Ta có   \(x-y=0\)

\(\Rightarrow\left(x-y\right)^2=0\Leftrightarrow x^2-2xy+y^2=0\)

\(\Rightarrow x^2+y^2-2xy=0\Leftrightarrow x^2+y^2=2xy\)

Ta có  \(x^2\ge0\) và  \(y^2\ge0\)

\(\Rightarrow x^2+y^2\ge0\)

\(\Rightarrow2xy\ge0\)

Vũ Thị Minh Nguyệt
22 tháng 5 2017 lúc 20:28

b/ Ta có: \(x-y+z=0\)

\(\Rightarrow\left(x-y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=0\)

\(\Rightarrow x^2+y^2+z^2=2\left(xy-xz+yz\right)\)

Vì \(x^2\ge0\)và  \(y^2\ge0\)và  \(z^2\ge0\)nên  \(x^2+y^2+z^2\ge0\)

\(\Rightarrow2\left(xy-xz+yz\right)\ge0\Leftrightarrow xy-xz+yz\ge0\)

a, \(x-y=0\Rightarrow x=y\)

Vì x,y cùng dấu nên \(xy\ge0\)

Hok tốt

Hoa Dương Trần
Xem chi tiết