Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Akame
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Akai Haruma
15 tháng 4 2023 lúc 19:13

a.

$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=1-\frac{1}{1000}=\frac{999}{1000}$

Akai Haruma
15 tháng 4 2023 lúc 19:15

b.

$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$

$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$

$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$

$=1-\frac{1}{500}=\frac{499}{500}$

$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$

Akai Haruma
15 tháng 4 2023 lúc 19:18

c.

$2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.100}$

$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{1000-998}{998.999.1000}$

$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{998.999}-\frac{1}{999.1000}$

$=\frac{1}{1.2}-\frac{1}{999.1000}=\frac{499499}{999000}$

$\Rightarrow C=\frac{499499}{999000}:2=\frac{499499}{1998000}$

Huyền Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 13:28

a: =1/2-1/3+1/3-1/4+...+1/99-1/100

=1/2-1/100=49/100

b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)

=5/3*102/103

=510/309=170/103

c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)

=1/2*16/51=8/51

BÍCH THẢO
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 20:27

1: Số số hạng là (99-1):1+1=99(số)

Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)

1:

3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]

=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)

=n(n+1)*(n+2)

=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

phạm lê quỳnh anh
Xem chi tiết
phạm lê quỳnh anh
18 tháng 10 2021 lúc 6:07

giúp mik

Nguyễn Hoàng Minh
18 tháng 10 2021 lúc 7:22

mình thấy bài bạn có đáp án hết rồi mà?

phạm lê quỳnh anh
18 tháng 10 2021 lúc 7:27

mik nhaamf tí nha

No name :)))
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 10:12

a)

*\(1+2+3+...+\left(n-1\right)+n\)

Số số hạng là:

\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)

*\(1+3+5+...+\left(2n-1\right)\)

Số số hạng của dãy số là: 

\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)

TH
Xem chi tiết
Minh Triều
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

hoang le
Xem chi tiết

a; A  =1 + 2 +3+ 4+ 5+ ... +n

Xét dãy số 1; 2; 3; 4;5;...;n

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)

Tổng của dãy số trên là: (n + 1).n x 2 

A = (n + 1).n:2

 

 

 

B = 1 + 3 + 5+ 7+ ...+ (2n - 1)

Dãy số trên là dãy số cách đều với khoảng cách là: 

     3 - 1 = 2

Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n

Tổng của dãy số trên là:    (2n - 1 + 1) x n : 2 = n2

Vậy B = n2

 

   

c; C = 1.2 + 2.3 + 3.4 + ...+ n.(n + 1)

  C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3)

 C = \(\dfrac{1}{3}\)[1.2.3 + 2.3.(4 -1) + 3.4.(5- 2)+...+n.(n + 1).[(n+2) - (n-1)]

C = \(\dfrac{1}{3}\).[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n +1)(n+2)-(n-1).n.(n+1)]

C = \(\dfrac{1}{3}\).n.(n+1).(n+2)

Gà Con Thì Sao
Xem chi tiết