1: Số số hạng là (99-1):1+1=99(số)
Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)
1:
3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]
=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)
=n(n+1)*(n+2)
=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)