Cho tứ giác abcd.i là trung điểm ac. E,f là hình chiếu a lên bc,cd.cm ie=if
Cho tam giác ABC vuông tại A (AB < AC) M là trung điểm của BC. a) AB = 6 , AM = 5 Tính BC, AC. b) D, E là hình chiếu của M lên AB và AC. Chứng minh tứ giác ADME là hình chữ nhật.. c) F là điểm đối xứng của M qua E. Chứng minh tứ giác AMCF là hình thoi. d) Ke đường cao AH của tam giác ABC Chứng minh tam giác DHE vuông tại H.
b: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Cho tam giác ABC vuông tại C (AC<BC) gọi I là trung điểm của AB kẻ IE Vuông góc BC tại E, kẻ If vuông góc vớiBC tại F .cmr tứ giác CEIF là hình chữ nhật . Lấy điểm H trên tia If sao cho FI = FH cmr tứ giác CHFE là hình bình hành
*) Tứ giác CEIF là hình gì?
Tứ giác CEIF có:
∠CEI = ∠CFI = ∠ECF = 90⁰ (gt)
⇒ CEIF là hình chữ nhật
*) Do CEIF là hình chữ nhật (cmt)
⇒ FI = CE và FI // CE
Do FI // CE (cmt)
⇒ FH // CE
Do FI = CE (cmt)
FI = FH (gt)
⇒ FH = CE
Tứ giác CHFE có:
FH // CE (cmt)
FH = CE (cmt)
⇒ CHFE là hình bình hành
Sửa đề: IF vuông góc AC tại F
a: Xét tứ giác CEIF có
\(\widehat{CEI}=\widehat{CFI}=\widehat{FCE}=90^0\)
Do đó: CEIF là hình chữ nhật
b: CEIF là hình chữ nhật
=>CE//FI và CE=FI
CE=FI
FI=FH
Do đó: CE=FH
CE//FI
\(F\in IH\)
Do đó: CE=FH
Xét tứ giác CEFH có
CE//FH
CE=FH
Do đó: CEFH là hình bình hành
Bài 6:Cho tam giác ABC vuông tại A ,I là trung điểm của BC .Từ I kẻ IE vuông AB tại E ,kẻ IF vuông góc AC tại F .Trên tia IE lấy điểm M sao cho EM=EI .Trên tia IF lấy điểm N sao cho FI=FN
a/Tứ giác AEIF là hình gì?vì sao
b/tứ giác AIBM là hình gì?vì sao?
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
⇒◇DENF là hình chữ nhật
b ) Trong ΔMNP có : ND là đường trung tuyến
⇒ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét ΔNDF và ΔPDF có :
ND = DP ( cmt )Góc NFD = Góc PFD ( = 90° )DF : cạnh chung⇒ΔNDF = ΔPDF ( cạnh huyền - cạnh góc vuông )
⇒NF = PF ( 2 cạnh tương ứng )
⇒F là trung điểm NP
Cho tam giác ABC có 3 góc nhọn ( AB > AC) đường cao AH. Gọi M,N,E lần lượt là trung điểm của các cạnh AB, AC và BC
a) CM : BMNE là hình bình hành
b) CM: MN là đường trung trực của AH và tứ giác MNHE là hình bình hành
c) Gọi I là giao điểm của MN với A,F là hình chiếu của N lên BC , K là hình chiếu của H lên AC . CM: IF vuông góc với HK
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB và AC
nên MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN//BE và MN=BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AN(2)
Từ (1)và (2) suy ra AH là đường trung trực của MN
Xét ΔABC có
E,M lần lượt là trung điểm của CB và BA
nên ME là đường trung bình
=>ME=CA/2=NH
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
Cho tam giác ABC vuông tại A (AC<AB) Gọi I là trung điểm của BC Kẻ IE vuông góc với AB tại E Kẻ IF vuong góc với AC tại F
a,Chứng minh tứ giác AEIF là hình chữ nhật
b,Gọi H là điểm đối xứng của I qua F chứng minh rằng tứ giác AHFE là hình bình hành
c,tim điều kiện vuông góc của ABC để AI vuông góc với EF
Mình cần gấp ạ giúp em với
a: Xét tứ giác AEIF có
\(\widehat{AEI}=\widehat{AFI}=\widehat{FAE}=90^0\)
Do đó: AEIF là hình chữ nhật
Cho tam giác ABC có 3 góc nhọn (AB>AC), đường cao AH. Gọi M,N,E lần lượt là trung điểm của các cạnh AB, AC và BC.
a) Chứng minh rằng BMNE là hình bình hành
b) CHứng minh rằng MN là đường trung trực của AH và tứ giác MNHE là hình thang cân
c) Gọi I là giao điểm của MN với A,F là hình chiếu của N lên BC, K là hình chiếu của H lên AC. CHứng minh rằng IF vuông góc với HK.
các bạn giải chi tiết giúp mình nhe
a: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN=BE và MN//BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM
=>M nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2=AN
=>N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra MN là đường trung trực của AH
Xét ΔABC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung bình
=>ME=AC/2
mà HN=AC/2
nên ME=HN
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
Đề: Cho tam giác ABC vuông tại A có AB = 12cm, BC = 20cm. Gọi M,N lần lượt là trung điểm của hai cạnh AC, BC. Trên tia đối của tia CD lấy điểm D sao cho M là trung điểm của cạnh BD. Trên tia đối của tia CD lấy điểm E sao cho CE = CD.
a) Tính độ dài của đoạn thẳng MN.
b) Tính diện tích tam giác ABC.
c) Chứng minh: tứ giác ABCD là hình bình hành.
d) Chứng minh: tứ giác ABEC là hình chữ nhật.
e) Lấy điểm I trên cạnh BC sao cho BI<IC. Gọi H, K lần lượt là hình chiếu của I lên hai cạnh BE, EC. Gọi F là hình chiếu của E lên cạnh BC. Gọi S là giao điểm của HF và IK. Gọi T là hình chiếu của S lên cạnh HK. Chứng minh: ba đường thẳng HI, ST, KF đồng quy.
Giúp mình câu e với ạ ^^
e) Chứng minh HI, ST, KF đồng quy.
Gọi O là giao điểm của EI và HK.
Xét tứ giác HIKE ta có:
góc IHE = 900 (HI _|_ EB tại H)
góc IKE = 900 (KI _|_ EC tại K)
góc HEK = 900 (tứ giác ABEC là hình chữ nhật)
=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)
=> góc HIK = 900
=> KI _|_ HI tại I
Xét hình chữ nhật HIKE ta có:
2 đường chéo EI và HK cắt nhau tại O (cách vẽ)
=> O là trung điểm của EI và O là trung điểm của HK
Xét tam giác FEI vuông tại F ta có:
FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)
=> FO = 1/2 EI
Mà EI = HK (tứ giác HIKE là hình chữ nhật)
Nên FO = 1/2 Hk
Xét tam giác FHK ta có:
FO là đường trung tuyến (O là trung điểm của HK)
FO = 1/2 HK (cmt)
=> tam giác FHK vuông tại F
=> HF _|_ FK tại F
Xét tam giác SHK ta có:
ST là đường cao (ST _|_ HK tại T)
HI là đường cao (HI _|_ KI tại I)
KF là đường cao (KF _|_ HF tại F)
=> HI, ST, KF đồng quy tại một điểm (đpcm)
làm dài v mà có 1 người nhận xét đúng làm làm j
Cho tam giác ABC vuông tại A. Gọi I, F theo thứ tự là trung điểm của BC, AC. Kẻ IE vuông góc với AB (E thuộc AB)
a) Chứng tứ giác AEIF là hình chữ nhật
b) Lấy M đối xứng với I qua E. Chứng minh MACI là hình bình hành
c) Các đường thẳng MA, IF cắt nhau tại N. Chứng minh CN//AI
d) Kéo dài MB và NI cắt nhau tại Q, NC cắt tứ MI tại P. Tìm điều kiện ccuar tam giác ABC để tứ giác MNPQ là hình vuông
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP