Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghĩa Nguyễn Hoàng Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2022 lúc 17:03

\(=\dfrac{\left(x-2y\right)^6}{-2\left(x-2y\right)^2}=-\dfrac{1}{2}\left(x-2y\right)^4< 0\)

Cac chien binh thuy thu...
Xem chi tiết
Nguyễn Minh Thư
Xem chi tiết
Tran Quang Huy
Xem chi tiết
Nguyễn Đăng Nhân
2 tháng 10 2023 lúc 18:51

\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x-y\right)\left(x^2+8y^2\right)\)

\(=x^3-8y^3-\left(x^3-x^2y+8xy^2-8y^3\right)\)

\(=x^3-8y^3-x^3+x^2y-8xy^2+8y^3\)

\(=x^2y-8xy^2\)

⭐Hannie⭐
2 tháng 10 2023 lúc 19:13

\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x-y\right)\left(x^2+8y^2\right)\\ =x^3-8y^3-\left(x^3+8y^3-x^2y-8y^3\right)\\ =x^3-8y^3-x^3-8y^3+x^2y+8y^3\\ =-8y^3+x^2y\)

Nguyễn Tuấn Hùng
Xem chi tiết
ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Nguyễn Mai
Xem chi tiết
Dương Lam Hàng
Xem chi tiết
Phạm Thảo Linh
Xem chi tiết
Xyz OLM
28 tháng 10 2020 lúc 20:46

Ta có A = -x2 + 4x - 6 - y2 - 2y 

= -(x2 - 4x + 4) - (y2 + 2y + 1) - 1

= -(x - 2)2 - (y + 1)2 - 1 \(\le-1< 0\)

=> A < 0 với mọi x ; y

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
28 tháng 10 2020 lúc 20:51

A = -x2 + 4x - 6 - y2 - 2y 

= -( x2 - 4x + 4 ) - ( y2 + 2y + 1 ) - 1

= -( x - 2 )2 - ( y - 1 )2 - 1 ≤ -1 < 0 ∀ x, y

=> đpcm

Khách vãng lai đã xóa
Greninja
28 tháng 10 2020 lúc 20:56

\(A=-x^2+4x-6-y^2-2y\)

\(=-x^2+4x-4-y^2-2y-1-1\)

\(=-\left(x^2-4x+4\right)-\left(y^2+2y+1\right)-1\)

\(=-\left(x-2\right)^2-\left(y+1\right)^2-1\)

\(=-\left[\left(x-2\right)^2+\left(y+1\right)^2+1\right]\)

mà \(\left(x-2\right)^2\ge0\forall x\)

      \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+1>0\)

\(\Rightarrow-\left[\left(x-2\right)^2+\left(y+1\right)^2+1\right]< 0\)

\(\Rightarrow A< 0\)

Vậy A luôn có giá trị âm với mọi x,y

Khách vãng lai đã xóa