CMR:
a) 1050+5 chia hết cho 3 và 5
b) 1025+26 chia hết cho 9 và 2.
CMR a - 1050 + 5 chia hết cho 3 và 5;b- 1025 +26 chia hết cho 9 và 2.
CMR:
a)74n-1 chia hết cho 5
b)34n+1+2 chia hết cho 5
c)92n+1+1 chia hết cho 10
d)24n+2+1 chia hết cho 5
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
chứng minh rằng :
a) 942^60 - 351^37 chia hết cho 5
b) 242^7700-76^1025 chia hết cho 10
c) 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Câu b) 7700 cũng gần như thế thôi ông Giáo ạ
Bg
Ta có: 2427700 - 761025 = 2424.1925 - (...6)
= (2424)1925 - (...6)
= (...6)1925 - (...6)
= (...6) - (...6)
= (...0) \(⋮\)10
=> 2427700 - 761025 \(⋮\)10
=> ĐPCM
chứng minh rằng :
a) 942^60 - 351^37 chia hết cho 5
b) 242^2700-76^1025 chia hết cho 10
c) 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
a) Ta có: \(942^{60}=\left(942^4\right)^{15}=\left(\overline{...6}\right)^{15}=\overline{...6}\)
\(351^{37}=\overline{...1}\)
Vì \(\left(\overline{...6}\right)-\left(\overline{...1}\right)=\overline{...5}⋮5\) nên \(942^{60}-351^{37}⋮5\) (đpcm)
b) Ta có: \(242^{2700}=\left(2400^4\right)^{675}=\left(\overline{...6}\right)^{675}=\overline{...6}\)
\(76^{1025}=\overline{...6}\)
Vì \(\left(\overline{...6}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\) nên \(242^{2700}-76^{1025}⋮10\) (đpcm)
c) Để 995 - 984 + 973 - 962 chia hết cho cả 2 và 5 thì 995 - 984 + 973 - 962 phải chia hết cho 10
Có: \(99^5=99^2.99=\overline{...1}.99=\overline{...9}\)
\(98^4=\left(98^2\right)^2=\overline{...6}\)
\(97^3=\overline{...3}\)
\(96^2=\overline{...6}\)
\(\left(\overline{...9}\right)-\left(\overline{...6}\right)+\left(\overline{...3}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\)
\(\Rightarrow99^5-98^4+97^3-96^2⋮10\) (đpcm)
à mình nhầm câu b sửa số 242^2700 thành 242^7700 nhé
Có: \(242^{7700}=\left(242^4\right)^{1925}=\left(\overline{...6}\right)^{1925}=\overline{...6}\)
...
Đến chỗ này bn tự lm nhé, chỉ cần lấy chữ số tận cùng của 2427700 trừ đi 761025 là ra rồi.
Trong các số :
37 170; 7 620; 26 735; 10 20; 713; 15390
Số chia hết cho 9 là: …………………………………………………………..……………….
Số chia hết cho 3 nhưng không chia hết cho 9 là: ………………………………………………………………………………………….………………..
Số chia hết cho cả 2; 3; 5 và 9 là :…………………………………………………..…...
Chia hết cho 9 là 37170; 15390
Chia hết cho 3 nhưng ko chia hết cho 9 là 7620; 1020
Chia hết cho cả 2;3;5;9: 37170; 15390
Số chua hết cho 9 là: 37170;15390
Số chia hết cho 3 nhưng không chia hết cho 9 là:37170;7620;1020;15390
Số chia hết cho cả 2;3;5 và 9 là:37170;15390
Số 1050 chia hết cho những số nào ?
A. 9,5 và 2 B. 3,5 và 9
C. 2,3 và 9 D. 2,3 và 5
đây toán lớp 4 mà bạn
Chứng minh rằng (1050 + 44) chia hết cho 2 và 9
Ta có: \(10^{50}+44\)
Mà: \(10^{50}=100...0\) (50 số 0)
\(10^{50}\) có chữ số cuối cùng là 0 nên \(10^{50}\) ⋮ 2
Và: \(44\) ⋮ 2 \(\Rightarrow10^{50}+44\) ⋮ 2
________
Ta có: \(10^{50}+44\)
Mà: \(10^{50}=100...0\) (50 số 0)
Tổng các chữ số là: \(1+0+...+0=1\)
Tổng các chữ số của 44 là: \(4+4=8\)
\(\Rightarrow10^{50}+44\) có tổng các chữ số là: \(1+8=9\) ⋮ 9
Nên: \(10^{50}+44\) ⋮ 9
10⁵⁰ ⋮ 2
44 ⋮ 2
⇒ (10⁵⁰ + 44) ⋮ 2
*) Ta có:
10⁵⁰ = 1000...000 (50 chữ số 0)
⇒ 10⁵⁰ + 44 có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 4 + 4 = 9 ⋮ 9
⇒ (10⁵⁰ + 44) ⋮ 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
cmr:a^2+b^2 chia hết cho 3 thìa và b chia hết cho 3
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3
chứng tỏ a) 10^25 + 5 chia hết cho 3 và 5
b) 10^9 + 26 chia hết cho 9 và 2
a) + Ta có: \(10^{25}+5=100...0\) ( 25 số 0 ) \(+5=100...05\)( 24 số 0 )
Ta lại có: \(1+0+0+...+0+5=6⋮3\)
\(\Rightarrow10^{25}+5⋮3\)
+ Ta có: \(\hept{\begin{cases}10^{25}⋮5\\5⋮5\end{cases}}\)\(\Rightarrow\)\(10^{25}+5⋮5\)
Vậy \(10^{25}+5⋮3\)và \(5\)
Nếu bạn " thanks " thì cho mình 1 tk