giải phương trình 16^x+7.4^x+5=3.2^x+2
Giải phương trình:
a, \(16^x+7.4^x+5=3.2^{x+2}\)
b, \(2^{x^2+3}+3^{x^2}=9\)
Giải phương trình:
a, \(16^x+7.4^x+5=3.2^{x+2}\)
b, \(2^{x^2+3}+3^{x^2}=9\)
a/\(\Leftrightarrow\left(2^4\right)^x+7.\left(2^x\right)^2+5=3.2^x.4\)
Đặt \(2^x=y\) PT trở thành:
\(y^4+7y^2+5=12y\)
\(\Leftrightarrow y^4+7y^2-12y+5=0\)
Giải típ
Giải các bất phương trình sau:
a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}};\)
b) \({3.2^{x + 1}} \le 1.\)
a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}} \Leftrightarrow 2x - 1 \ge 2 - x \Leftrightarrow 3x \ge 3 \Leftrightarrow x \ge 1\)
b) \({3.2^{x + 1}} \le 1 \Leftrightarrow {2^{x + 1}} \le \frac{1}{3} \Leftrightarrow x + 1 \le {\log _2}\frac{1}{3} \Leftrightarrow x \le - {\log _2}3 - 1 = - {\log _2}3 - {\log _2}2 = - {\log _2}6\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
tìm x, biết x là số tự nhiên
b)2.3^x=162
c)(2x-15)^5=(2x-15)^3
d)3^(x+2) -5.3^x
e)7.4^(x-1)+4(x+1)=23
f)2.2^(2x)+4^3.4^x=1056
10 -{[(x:3+17):10+3.2^4]:10}=5
gấp, mọi ng giúp mình với
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`
giải phương trình : (4x^2+16)/(x^2+6)=3/(x^2+1)+5/(x^2+3)+7/(x^2+5)
a) 16 - 3x = 4
<=> 3x = 12
<=> x = 4
Vậy x = 4 là nghiệm phương trình
b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4
<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0
<=> (x - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 \(\forall x\))
<=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy x \(\in\left\{1;3\right\}\)là nghiệm phương trình
a)16-3x=4
3x=16-4
3x=12
x=4
Vậy x=4
b)(x2-4x+5)2-(x-1).(x-3)=4
[(x-2)2+1]2-[(x-2)+1].[(x-2)-1]=4
=>(x-2)2+2.(x-2).1+1-(x-2)2-12=4
2(x-2)=4
=>x-2=2
=>x=4
Vậy ....................
Chú bn học tốt
a) 16 - 3x = 4
<=> 3x = 12
<=> x = 4
Vậy x = 4 là nghiệm phương trình
b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4
<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0
<=> (x - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 ∀x)
<=> [
x−1=0 |
x−3=0 |
⇔[
x=1 |
x=3 |
Vậy x ∈{1;3}là nghiệm phương trình
giải phương trình: (x2 +1) (x+3) (x+5) +16 =0
giải các phương trình sau
a) 2/x-3 + x-5/x-1 = 1
b)x+1/x-1 - x-1/x+1 =16/x^2-1
a) \(\dfrac{2}{x-3}+\dfrac{x-5}{x-1}=1\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)+\left(x-5\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}=1\)
\(\Leftrightarrow2\left(x-1\right)+\left(x-5\right)\left(x-3\right)=\left(x-3\right)\left(x-1\right)\)
\(\Leftrightarrow2x-2+x^2-8x+15-x^2+4x-3=0\)
\(\Leftrightarrow-2x+10=0\) \(\Leftrightarrow x=5\)
b) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\) (2)
Ta có \(x^2-1=\left(x-1\right)\left(x+1\right)\)
ĐKXĐ: \(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
(2) \(\Leftrightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2-16}{x^2-1}=0\)
mà \(x^2-1\ne0\) để phương trính có nghĩa
\(\Leftrightarrow\left(x+1\right)^2=\left(x-1\right)^2-16=0\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1-16=0\)
\(\Leftrightarrow4x-16=0\) \(\Leftrightarrow x=4\)