Điều kiện xác định của phương trình\(\dfrac{x+2}{x-3}=\dfrac{3x-1}{x\left(x-3\right)}+1\)
A.\(x\ne0;x\ne3\)
B.\(x\ne0;x\ne-3\)
C.\(x\ne0\)
D.\(x\ne\pm3\)
Điều kiện xác định của phương trình\(\dfrac{x+2}{x-3}=\dfrac{3x-1}{x\left(x-3\right)}+1\)
A.\(x\ne0;x\ne3\)
B.\(x\ne0;x\ne-3\)
C.\(x\ne0\)
D.\(x\ne\pm3\)
Điều kiện xác định là `{(x-3 ne 0),(x(x-3) ne 0):}`
`<=>{(x ne 3),(x ne 0):}`
`=>bb A`
ĐCXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
Điều kiện xác định của phương trình : \(\dfrac{x}{x-2}-\dfrac{2x}{x^2-1}=0\) là :
\(A.x\ne-1;x\ne-2\)
\(B.x\ne2\) và \(x\ne\pm1\)
\(C.x\ne0\)
\(D.x\ne-2,x\ne1\)
để pt được xác định thì :
\(x-2\ne0;x^2-1\ne0\)
=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy chọn B
Đưa các biểu thức sau thành phân thức:
a) M=\(\dfrac{\dfrac{y}{4}-2+\dfrac{15}{4y}}{\dfrac{y}{2}+\dfrac{6}{y}-\dfrac{7}{2}}\) với y \(\ne\) 0; y \(\ne\) 3 và y \(\ne\) 4
b) N=\(\dfrac{3b-\dfrac{1}{9b^2}}{1+\dfrac{1}{3b}+\dfrac{1}{9b^2}}\) với b \(\ne\) 0
Giúp mình với.
điều kiện xác định của phương trình \(\dfrac{8x+1}{2x+5}=\dfrac{4x+3}{x-2}\)là?
A. x \(\ne\)2 B. x \(\ne\)\(\dfrac{-5}{2}\) C. x \(\ne\)2 hoặc x \(\ne\)\(\dfrac{-5}{2}\) D. x\(\ne\)2 và x\(\ne\)\(\dfrac{-5}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x+5\ne0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{5}{2}\\x\ne2\end{matrix}\right.\)
D
Chứng minh rằng :
a) Giá trị của biểu thức :
\(\left(\dfrac{x+1}{x}\right)^2:\left[\dfrac{x^2+1}{x^2}+\dfrac{2}{x+1}\left(\dfrac{1}{x}+1\right)\right]\) bằng 1 với mọi giá trị \(x\ne0;x\ne-1\)
b) Giá trị của biểu thức :
\(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\) bằng 1 khi \(x\ne0;x\ne-3;x\ne3;x\ne-\dfrac{3}{2}\)
Câu 10 (2,5 điểm). Cho hai biểu thức $P=\dfrac{2{{x}^{2}}-1}{{{x}^{2}}+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}$ với $x\ne 0, \, x\ne -1$ và $Q=\dfrac{x+1}{{{x}^{2}}-9}$ với $x\ne \pm 3$.
a) Tính giá trị biểu thức $Q$ khi $x=2$.
b) Rút gọn biểu thức $P$.
c) Đặt $M=P.Q$. Tìm $x$ để $M=\dfrac{-1}{2}$.
a)Thay x=2(TMDK) vào bt Q :
\(Q=\dfrac{2+1}{2^2-9}=-\dfrac{3}{5}\)
b) \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1-\left(x-1\right)\left(x+1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{2x^2-1-\left(x^2-1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)
c) \(M=P.Q=\dfrac{x+3}{x+1}.\dfrac{x+1}{x^2-9}\\ =\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x-3}\)
\(M=-\dfrac{1}{2}\\ =>\dfrac{1}{x-3}=-\dfrac{1}{2}\\ =>x-3=-2\\ =>x=1\left(TMDK\right)\)
Với \(z\) là ẩn; \(m\), \(n\), \(p\) là các số và \(m\ne-n;n\ne-p;p\ne-m\).
Giải phương trình: \(\dfrac{z-mn}{m+n}+\dfrac{z-np}{n+p}+\dfrac{z-pm}{p+m}=m+n+p\)
\(\Leftrightarrow\dfrac{z-mn}{m+n}-p+\dfrac{z-np}{n+p}-m+\dfrac{z-pm}{p+m}-n=0\)
\(\Leftrightarrow\dfrac{z-\left(mn+mp+np\right)}{m+n}+\dfrac{z-\left(mn+mp+np\right)}{n+p}+\dfrac{z-\left(mn+mp+np\right)}{p+m}=0\)
\(\Leftrightarrow\left[z-\left(mn+mp+np\right)\right]\left(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}\right)=0\)
- Nếu \(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}=0\) thì pt nghiệm đúng với mọi z
- Nếu \(\dfrac{1}{m+n}+\dfrac{1}{m+p}+\dfrac{1}{n+p}\ne0\)
\(\Rightarrow z=mn+mp+np\)
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)
\(x^2-2mx-m^2-1=0\) (1)
a) Giải phương trình (1) khi `m = 2`
b) Tìm giá trị của tham số m để phương trình (1) có 2 nghiệm \(X_1;X_2\) thỏa mãn:
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)
(a) Khi \(m=2,\left(1\right)\Leftrightarrow x^2-4x-5=0\left(2\right)\).
Phương trình (2) có \(a-b+c=1-\left(-4\right)+\left(-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{c}{a}=5\end{matrix}\right.\).
Vậy: Khi \(m=2,S=\left\{-1;5\right\}\).
(b) Điều kiện: \(x_1,x_2\ne0\Rightarrow m\in R\)
Phương trình có nghiệm khi:
\(\Delta'=\left(-m\right)^2-1\cdot\left(-m^2-1\right)\ge0\)
\(\Leftrightarrow2m^2+1\ge0\left(LĐ\right)\)
Suy ra, phương trình (1) có nghiệm với mọi \(m\).
Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)
Theo đề: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-\dfrac{5}{2}\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\dfrac{5}{2}\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow2\left(2m\right)^2+\left(-m^2-1\right)=0\)
\(\Leftrightarrow7m^2=1\Leftrightarrow m=\pm\dfrac{\sqrt{7}}{7}\) (thỏa mãn).
Vậy: \(m=\pm\dfrac{\sqrt{7}}{7}.\)
1. Cho biểu thức:
A = \(x-2+\dfrac{6x^2-3x}{x^3+2x^2}+\left(\dfrac{x+1}{x^2-1}+\dfrac{2}{x+1}-\dfrac{3}{x}\right):\dfrac{x+2}{x^2-1}\)
a) Rút gọn A.
b) Tìm x sao cho A nhận giá trị âm.
2. Giải phương trinh: \(\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{a+c-x}{b}=1-\dfrac{4x}{a+b+c}\) với \(a,b,c\ne0\); \(a+b+c\ne0\); \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ne\dfrac{4}{a+b+c}\) và x là ẩn số.
3. Giải bất phương trình: \(3x^3+4x^2+5x-6>0\).
4. Tìm x sao cho: 2 < x < 3 và \(2\left|x\right|-3\left|x-2\right|+4\left|x-3\right|=5\)
Câu 3:
\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)
\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)
=>3x-2>0
=>x>2/3
Câu 1:
a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)
\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)
\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)
\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)
\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)
\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)
\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)
\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)
\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)
b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)
TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)