cho a,b,c >0 thỏa a+b+c=10 CMR ab/c+12 + bc/a+12 + ac/b+12
Cho a;b;c>=0 thỏa mãn : \(3\left(a^2+b^2+c^2\right)+ab+bc+ac=12\)
Tìm min max của \(P=\dfrac{a^2+b^2+c^2}{a+b+c}+ab+bc+ac\)
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em
Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html
Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có
\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)
\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)
Vậy ta có điều phải chứng minh.
Câu 2. Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz
\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)
Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\) và \(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)
Cộng ba bất đẳng thức lại ta được
\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\) (ĐPCM).
Cho ba số dương a,b,c thoả mãn:a+b+c=12.CMR:
\(\frac{ab}{c+12}+\frac{ac}{b+12}+\frac{bc}{a+12}\le3\)
\(P=\sum\frac{ab}{c+a+b+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+b}+\frac{ab}{b+c}\right)\)
\(P\le\frac{1}{4}\left(\frac{ac+bc}{a+b}+\frac{ac+ab}{b+c}+\frac{bc+ab}{a+c}\right)=\frac{12}{4}=3\)
Dấu "=" xảy ra khi \(a=b=c=4\)
Cho a, b, c > 0 thỏa mãn abc=144.
Tính \(\frac{12a}{ab+12a+12}+\frac{b}{bc+b+12}+\frac{c}{ab+bc+1}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cho m=ab(a+b-c)+bc(b+c-a)+ca(c+a-b). CMR a+b+c⋮⋮12 thì M⋮⋮12
Mong các bạn giúp mik giải ạ!
Cho a, b, c > 0 thỏa a + b + c = 3
CMR : \(abc+\frac{12}{ab+bc+ca}\ge5\)
Trong chuyên mục phương pháp DÙNG P, Q, R
Dùng cái khác cùng đc
Đặt p = a+b+c q = ab+bc+ca r = abc
Bđt cần cm tương đương
\(r+\frac{12}{q}\ge5\)
\(\Leftrightarrow9r+\frac{108}{q}\ge45\left(1\right)\)
Ta cm đc bđt từ Schur và biến đổi tương đương : \(p^3+9r\ge4pq\)
\(\Leftrightarrow9r\ge4pq-p^3=12q-3^3=12q-27\)
\(\left(1\right)\Leftrightarrow9r+\frac{108}{q}\ge12q-27+\frac{108}{q}\)
Ta cần cm : \(12q-27+\frac{108}{q}\ge45\)
\(\Leftrightarrow12q+\frac{108}{q}\ge72\)( bđt đùng vì cô si)
1) cho 2x=a+b+c. Cmr: (x-a)(x-b)+(x-b)(x-c)(x-a)=ab+ac+bc-x2
2) cho a, b, c thoả mãn :
ab+bc+ca=abc và a+b+c=1
CM: (a-1)(b-1)(c-1)=0
3) cho x-y=12. Tính:
A= x3-y3-36xy
Cho m=ab(a+b-c)+bc(b+c-a)+ca(c+a-b). CMR a+b+c\(⋮\)12 thì M\(⋮\)12
Cho ba số a,b,c thỏa mãn: ab+bc+ac=12
Vậy giá trị nhỏ nhất của a^4+b^4+c^4
Ta có: \(ab+bc+ac\le a^2+b^2+c^2\forall a,b,c\)
\(\Rightarrow12\le a^2+b^2+c^2\forall a,b,c\)
Đặt \(T=a^4+b^4+c^4\)\(=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left[\left(1^2\right)^2+\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\right]\)
\(\ge\left(a^2+b^2+c^2\right)^2=12^2=144\)
\(\Leftrightarrow3T\ge144\Leftrightarrow T\ge48\)
Đẳng thức xảy ra khi \(a=b=c=\pm2\)
Vậy với \(a=b=c=\pm2\) thì \(T_{Min}=48\)