T=x(x-1)+1 tìm nghiệm của đa thức
1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x = 2. Từ đó hãy tìm một nghiệm của đa thức F(x)
2. Tìm nghiệm của đa thức E(x) = x2 + x.
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
Tìm nghiệm của đa thức f (x)= 2x-1 . Xác định a để nghiệm của đa thức
f(x) cũng là nghiệm của đa thức g(x)=4x^2-ax+1
f(x)=0
=>x=1/2
g(1/2)=0
=>1-1/2a+1=0
=>2-1/2a=0
=>a=4
Bài 1. Tìm đa thức P(x) = x2 + ax + b. Biết rằng nghiệm của đa thức P(x) cũng là nghiệm của đa thức Q(x) = (x+2)(x-1)
Bài 2. Cho đa thức f(x) thỏa mãn f(x) + x f(-x) = x + 1 với mọi giá trị của x. Tính f(1)
Bài 3. Cho đa thức P(x) = x(x - 2) - 2x + 2m - 2015 (x là biến số, m là hằng số). Tìm m để đa thức có nghiệm.
Cho 2 đa thức: P(x)= -2x\(^2\)- 5x + 1 và Q(x)= -2x\(^2\) + x-5
a/ Tìm đa thức T(x)=P(x)+Q(x)
b/tìm nghiệm của đa thức T(x) vừa tìm ở câu a
a)Vì T(x)=P(x)+Q(x)
=>T(x)=(-2x2-5x+1)+(-2x2+x-5)
=>T(x)=-2x2-5x+1-2x2+x-5
=>T(x)=(-2x2-2x2)+(-5x+x)+(1-5)=-4x2-4x-4
b)Xét T(x)=-4x2-4x-4=0
=>-(4x2+4x+4)=0
=>4x2+4x+4=0
=>4x2+2x+2x+1+3=0
=>2x(2x+1)+(2x+1)+3=0
=>(2x+1)(2x+1)+3=0
=>(2x+1)2+3=0
Vì (2x+1)2 > 0 với mọi x
=>(2x+1)2+3 > 3 > 0 với mọi x
=>T(x) vô nghiệm
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
Câu 8 :
a) Tìm nghiệm của đa thức A(x) =2x-1
b) Tìm nghiệm của đa thức A(x) = 3x-1
c) Tìm giá trị nhỏ nhất của biểu thức A =|x-1| + | x-2019 |
a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)
1) Tìm nghiệm của đa thức: 2x2+2x+1.
2) tìm nghiệm của đa thức D(x)=x^2-6x+15
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
Cho các đa thức P (x) = 5ײ–1+3x+x²–5x³ và Q(x)= 2–3x³+6x²+5x‐2x³–x a) thu gọn và sắp xếp hai đa thức P(x) , Q(x) theo lũy thừa giảm dần của biến b)Tính H(x)=P(x)+Q(x),T(x)=P(x)–Q(x) c) Tìm nghiệm của đa thức T(x) d) Tìm đa thức G(x) biết G(x)+Q(x)= -P(x)
a: P(x)=-5x^3+6x^2+3x-1
Q(x)=-5x^3+6x^2+4x+2
b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2
=-10x^3+12x^2+7x+1
T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2
=-x-3
c: T(x)=0
=>-x-3=0
=>x=-3
d: G(x)=-(-10x^3+12x^2+7x+1)
=10x^3-12x^2-7x-1
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)