Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đình Nhật Long
Xem chi tiết
Yeutoanhoc
4 tháng 5 2021 lúc 8:15

$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm

Lê Vũ Ngọc Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 20:16

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

Đặng Anh Thư
Xem chi tiết

A=-x2+6x-19

A=-(x2-6x+9)-10

A=-(x-3)2-10

Vì \(\left(x-3\right)^2\ge0\)

Nên \(-\left(x-3\right)^2\le0\)

=>\(A\le-10\)

=>A vô nghiệm

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
20 tháng 4 2021 lúc 20:14

\(A=-x^2+6x-19\)

\(A=-\left(x^2-6x+9+10\right)\)

\(A=-\left(x+3\right)^2-19\)

Vì \(-\left(x+3\right)^2\le\)Với mọi x

\(\Rightarrow A\le-19\)với mọi x

\(\Rightarrow A\)Vô nghiệm

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
20 tháng 4 2021 lúc 21:18

A = -x2 + 6x - 19 = -( x2 - 6x + 9 ) - 10 = -( x - 3 )2 - 10 ≤ -10 < 0 ∀ x

hay A vô nghiệm ( đpcm )

Khách vãng lai đã xóa
Khánh
Xem chi tiết
Trần Thanh Phương
12 tháng 4 2019 lúc 5:48

\(9x^2+6x+8=0\)

\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1+7=0\)

\(\Leftrightarrow\left(3x+1\right)^2+7=0\)

\(\Leftrightarrow\left(3x+1\right)^2=-7\)( vô lý )

Vậy đa thức vô nghiệm

♥
Xem chi tiết
Nguyễn Văn Tuấn
6 tháng 5 2018 lúc 9:07

ta có :\(^{3x^2-6x\ge0}\)
          15 >0
=}\(^{3x^2-6x+15\ge15}\)
=}đa thức \(3x^2-6x+15\)vô nghiệm

k giùm mình nhé

♥
6 tháng 5 2018 lúc 9:42

=(3x2-3x)-(3x+3)+12

=3x(x-1)-3(x-1)+12

=(x-1)(3x-3)+12

=(x-1).3.(x-1)+12

=3.(x-1)2+12

Ta có: 3.(x-1)2\(\ge\)0,\(\forall x\)12>0

=>3(x-1)2+12>0

Vậy đa thức trên vô nghiệm

Phương Nguyễn Thị Hà
Xem chi tiết
Anime Thế Giới Mới
Xem chi tiết
ABCXYZ
Xem chi tiết
Phạm Tuấn Đạt
1 tháng 5 2018 lúc 9:46

Ta có

\(9x^2+6x+10\)

\(=9x^2+3x+3x+1+9\)

\(=3x\left(3x+1\right)+3x+1+9\)

\(=\left(3x+1\right)\left(3x+1\right)+9\)

\(=\left(3x+1\right)^2+9\ge9.Với\forall x\in Q\)

Vậy đa thức trên vô nghiệm

Kaya Renger
1 tháng 5 2018 lúc 9:43

\(f\left(x\right)=9x^2+6x+10=\left(3x+1\right)^2+9>0\)

Châu Tuyết My
1 tháng 5 2018 lúc 9:43

9x2+6x+10

(a=9, b'=3, c=10)

Ta có: \(\Delta\)=b'2-ac

hay  \(\Delta\)=32-9.10

<=> \(\Delta\)=-81

Vì \(\Delta\)=-81<0 nên phương trình vô nghiệm.

Tiểu Thư Họ Trần
Xem chi tiết
Trịnh Anh
30 tháng 4 2018 lúc 16:08

Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x

              6x lớn hơn hoặc bằng 0 với mọi x

         => 3x^2+6x+11 >11

         => Đa thức A(x) k có nghiệm

  Vậy đa thức A(x) k có nghiệm.

Trần Quốc Việt
30 tháng 4 2018 lúc 16:12

\(A\left(x\right)=3x^2+6x+11\)

\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)

\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)

\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)

\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)

\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)

Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)

=> \(2x^2+\left(x+3\right)^2\ge0\)

=> \(2x^2+\left(x+3\right)^2+2\ge2\)

=> \(2x^2+\left(x+3\right)^2+2\ne0\)

=> \(A\left(x\right)\ne0\)

Vậy đa thức \(A\left(x\right)\)không có nghiệm

Đinh quang hiệp
30 tháng 4 2018 lúc 16:14

\(A\left(x\right)=3x^2+6x+3+8=3\left(x^2+2x+1\right)+8=3\left(x+1\right)^2+8\)

vì \(\left(x+1\right)^2>=0\Rightarrow3\left(x+1\right)^2>=0;8>0\Rightarrow3\left(x+1\right)^2+8>0\)

\(\Rightarrow A\left(x\right)=3x^2+6x+11>0\Rightarrow\)đpcm