Cho tam giác ABC có \(\widehat{A}>\widehat{B}>\widehat{C}\). Vẽ đường cao AH và lấy điểm O nằm giữa A và H, tia CO cắt AB tại D.
a) So sánh độ dài đoạn thẳng OB và OC.
b) So sánh độ dài đoạn thẳng OD và HD.
Cho tam giác ABC. \(\widehat{A}>\widehat{B}>\widehat{C}\). Vẽ đường cao AH rồi lấy điểm o nằm giữa A và H.
a/ CMR: Góc B và C là góc nhọn
b/ So sánh OB VÀ OC: OD VÀ HD
Cho tam giác ABC có \(\widehat{B}< 90^o\) và \(\widehat{B}=2.\widehat{C}\). Kẻ đường cao AH. Trên tia đối của tia BA lấy điểm E sao cho BE = BH. Đường thẳng HE cắt AC tại D.
1, Chứng minh : \(\widehat{BEH}=\widehat{ACB}\)
2, So sánh độ dài của ba đoạn thẳng : DH; DC và DA.
3, Lấy B' sao cho H là trung điểm của BB'.
Tam giác AB'C là tam giác gì? Vì sao?
4, Chứng minh : Nếu tam giác ABC vuông tại A thì \(DE^2=BC^2-AB^2\)
Bạn tự vẽ hình nha
1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE
Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)
2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)
Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng )
Vậy DH=DC=DA
3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)
Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'
-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'
4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A
Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1)
Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)
Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều
Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)
=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm)
Học tốt nhé 🙋♀️🙋♀️🙋♀️💗💗💗
Cho tam giác ABC ( AB > AC). Trên đường thẳng chứa cạnh BC, lấy điểm D và điểm E sao cho B nằm giữa D và C, C nằm giữa B và E, BD = BA, CE = CA ( H.9.52)
a) So sánh \(\widehat {ADE}\) và \(\widehat {AED}\).
b) So sánh các đoạn thẳng AD và AE.
a)
\(AB > AC \Rightarrow \widehat {ABC} < \widehat {ACB}\)( quan hệ giữa góc và cạnh đối diện trong tam giác ABC)
\(\begin{array}{l} \Rightarrow {180^0} - \widehat {ABD} < {180^0} - \widehat {ACE}\\ \Rightarrow \widehat {ABD} > \widehat {ACE}\end{array}\)
Vì BD= BA nên tam giác ABD cân tại B \( \Rightarrow \widehat {ABD} = {180^0} - 2\widehat {ADB}\)
Vì CE = CA nên tam giác ACE cân tại C \( \Rightarrow \widehat {ACE} = {180^0} - 2\widehat {AEC}\)
\(\begin{array}{*{20}{l}}{ \Rightarrow {{180}^0} - 2\widehat {ADB} > {{180}^0} - 2\widehat {AEC}}\\{ \Rightarrow \widehat {ADB} < \widehat {AEC}}\\{Hay{\mkern 1mu} \widehat {ADE} < \widehat {AED}}\end{array}\)
b) Xét tam giác ADE ta có : \(\widehat {ADB} < \widehat {AEC}\)
\( \Rightarrow AD > AE\)(Quan hệ giữa cạnh và góc đối diện trong tam giác).
Cho tam giác ABC vuông tại A có \(\widehat B > {45^o}\)
a) So sánh các cạnh của tam giác
b) Lấy điểm K bất kì thuộc đoạn thẳng AC. So sánh độ dài BK và BC.
Tham khảo:
a) Vì tam giác ABC vuông tại A nên \(\widehat{A}=90^0; \widehat{B}+\widehat{C}=90^0\)
Vì \(\widehat B > {45^o} \Rightarrow \widehat C < {45^o} \Rightarrow \widehat A > \widehat B > \widehat C \Rightarrow BC > AC > AB\)
b) Vì \(\widehat {BKC}\) là góc ngoài tại đỉnh K của tam giác ABK nên \(\widehat {BKC}>(\widehat {BAK}=90^0\)
Xét tam giác BCK, ta có :
\(\widehat {BKC} > {90^o} > \widehat {BCK}\)
\( \Rightarrow BC > BK\) ( quan hệ giữa góc và cạnh đối diện trong tam giác)
Cho tam giác ABC có A>B>C. Vẽ đường cao AH, lấy điểm O nằm giữa A và H. Tia CO cắt AB tại D.
a, CM: goc B và C nhọn.
b, So sánh: OB và OC.
c, So sánh OD và HD.
cho tam giác ABC. M,N là điểm chính giữa BC và CA. Các đường thẳng AM và BN cắt nhau tại O. Đường thẳng CO cắt AB tại P.
a, So sánh độ dài đoạn AP và PB.
b, So sánh độ dài đoạn thẳng AO và OM
cho tam giác ABC có AC > AB kẻ đường vuông góc AH từ A đến đường thẳng BC gọi D là điểm nằm giữa A và H a) so sánh độ dài các đoạn thẳng HC và HB b) so sánh các độ dài các đoạn thẳng DC và DB
a: Xét ΔABC có AC>AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC>HB
b: Xét ΔDBC có HB<HC
mà HB,HC lần lượt là hình chiếu của DB,DC trên BC
nên DB<DC
Cho tam giác ABC có \(\widehat{A}>\widehat{B}>\widehat{C}\). Vẽ đường cao AH, lấy điểm O nằm giữa A và H. Tia CO cắt AB tại D.
a, CM: \(\widehat{B}\) và \(\widehat{C}\) nhọn.
b, So sánh: OB và OC.
c, So sánh OD và HD.
Help me!!! MK cần gấp lắm!!!
a) vì góc A lớn nhất nên góc A có thể là góc vuông, góc tù hoặc góc nhọn.
+trường hợp A là góc vuông và góc tù thì góc B và C ko thể lớn hơn hoặc bằng 90 độ. do đó góc B và C là góc nhọn
+ trường hợp góc A là góc nhọn thì góc B và góc C cx bé hơn 90 độ vì góc A>góc B> góc C.
a) Ta có: góc A> góc B> góc C
\(\Rightarrow\) góc B và góc C là góc nhọn
Tức quá , lag chết đi đc
b) Xét tam giác ABC có góc B > góc C
=> AC>AB (...........)
=> HC>HB ( quan hệ đường xiên hình chiếu )
=> OC>OB ( quan hệ đường xiên hình chiếu )
c) Xét tam giác OHC vuông tại H có :
góc HOC + góc HCO = 90 độ
=> góc HOC là góc nhọn
Ta có : góc HOC + góc HOD = 180 độ ( kề bù )
mà góc HOC là góc nhọn
=> góc HOD là góc tù
Xét tam giác OHD có góc HOD là góc tù
=> HD>OD ( quan hệ giữa góc và cạnh trong một tam giác)
Cho tam giác ABC; M và N là điểm chính giữa cạnh BC và CA. Các đường thẳng AM và BN cắt nhau tại O. Đường thẳng CO cắt AB tại P.
a) So sánh độ dài các đoạn AP và PB
b) So sánh độ dài các đoạn AO và OM