Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{1}{x-5\sqrt{x}+7}\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
a.tìm giá trị lớn nhất của biểu thức:P=\(\sqrt{3x-5}+\sqrt{7-3x}\)
b.cho x>1, tìm GTNN của biểu thức: A=2x+\(\dfrac{9}{x-1}\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
Bài 7. Tìm giá trị lớn nhất của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\)
`A = 1/(x-sqrt x + 1/4 + 3/4) = 1/((sqrtx-1/2)^2+3/4) <= 1/(0+3/4) = 1 : 3/4 = 4/3.`
Đẳng thức xảy ra `<=> sqrtx-1/2 = 0`
`<=> sqrtx = 1/2 <=> x = 1/4`.
Vậy Max `A = 4/3 <=> x= 1/4`.
cho biểu thức: P = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
a, Rút gọn P
b, Tìm giá trị của P khi x = 7 - \(4\sqrt{3}\)
c, Tìm x để P có giá trị lớn nhất
Cho các biểu thức A=\(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B=\(\dfrac{3}{\sqrt{x}-1}\) với x≥0, x≠1, x≠9
a) Tính giá trị của B khi x=4
b) Rút gọn biểu thức P=A-B
c) Tìm xϵN để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất
a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:
\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)
Vậy: Khi x=4 thì B=3
b) Ta có: P=A-B
\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
Tìm giá trị nguyên của x để biểu thức P=\(\dfrac{4+\sqrt{x}}{1+\sqrt{x}}\) có giá trị lớn nhất
\(P=\dfrac{\sqrt{x}+1+3}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)
P lớn nhất khi căn x+1=1
=>x=0
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
Cho biểu thức : A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) , với x ≥ 0 và x ≠ 9
a) Rút gọn biểu thức A.
b) Tìm gi trị của x để A = \(\dfrac{1}{3}\).
c) Tìm giá trị lớn nhất của biểu thức A.
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\) (x>0)
Tìm giá trị lớn nhất của biểu thức
Vì `x>0` nên ta chia 2 vế tử và mẫu cho `sqrtx>0`
`=>sqrx/(x-sqrtx+1)`
`=1/(sqrtx-1+1/sqrtx)`
Áp dụng cosi:
`sqrtx+1/sqrtx>=2`
`=>sqrtx-1+1/sqrtx>=1`
`=>1/(sqrtx-1+1/sqrtx)<=1`
Hay `sqrtx/(x-sqrtx+1)<=1`
Dấu "=" `<=>x=1`
Tìm giá trị lớn nhất của biểu thức : P =\(\dfrac{1}{x-\sqrt{x}+1}\)
P đạt giá trị lớn nhất \( \Leftrightarrow (x-\sqrt{x}+1) \) nhỏ nhất.
Mà \(x ≥0 \forall x \Rightarrow (x-\sqrt{x}+1)_{min} \Leftrightarrow x=0 \)
\( \Rightarrow P_{min}=\dfrac{1}{0-0+1}=1 \Leftrightarrow x=0\)
Vậy \(P_{min} =1 \Leftrghtarrow x=0\).
Để P đạt GTLN
\(\Leftrightarrow x-\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\left(\sqrt{x}^2-2\sqrt{x}\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\) đạt GTNN
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) đạt GTNN
Nhận xét: \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\forall x\inĐK\)
\(\Rightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\inĐK\) hay \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\inĐK\)
\(\Rightarrow Pmin=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy P đạt giá trị nhỏ nhất bằng 3/4 khi x=1/4