CM bất dẳng thức sau: a) 297.299<298^2
b) 26^3-24^3<(26-24)^3
c) 45^2-31^2>44-30
d) (17+13)^2> 17^2+13^2
cm bất dẳng thức sau
a(a+b)(a+c)(a+b+c)+b2c2>0
cm bất dẳng thức : a^2+b^2+c^2> hoặc bằng a(b+c)với mọi a,b,c
CM: \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (bất dẳng thức Cô-si mở rộng)
Đây nhé,một lời giải không thể quen thuộc hơn=)
Bổ sung đk a, b, c > 0.
Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\)
BĐT \(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Kết hợp đk x, y, z > 0 suy ra đpcm.
C/m bất dẳng thức sau:
\((a^2 +b^2)(a^2+1) \geq 4a^2b\) luôn dúng với mọi a,b
chứng minh bất dẳng thức sau:
\(\frac{a}{b}+\frac{b}{2}\ge2\)
các bạn lm ơn giúp minh vs
phải có điều kiện nữa chứ
hình như sai đề goy
chắc là (a/b)+(b/a)>= 2 đó bn
chứng minh bất dẳng thức sau
\(\frac{1}{a}\)\(+\frac{1}{b}\)bé hơn hoặc bằng \(\frac{2}{1+\sqrt{ab}}\)
chứng minh bất dẳng thức :
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Có: \(-\left(a-b\right)^2\le0\) với mọi x
=> \(-a^2+2ab-b^2\le0\)
=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))
=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\)
dấu "=" xẩy ra khi và chỉ khi a=b
ta có : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
<=>\(a^2+2ab+b^2\le2a^2+2b^2\)
<=> \(a^2-2ab+b^2\ge0\)
<=> \(\left(a-b\right)^2\ge0\) bất đẳng thức luôn đúng
=> ĐPCM
chứng minh bất dẳng thức hoán vị
help me bro!
a) Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)
\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)
\(=a^2d^2+b^2c^2-2abcd\)
\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)
\(=\left(ad-bc\right)^2\ge0\)
\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)