cho HCN ABCD ,gọi E,F,G,H lần lượt là trung điểm AB,BC,CD,DA
C/M tứ giác EFGH là hthoi
Cho HBH ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Gọi M, N lần lượt là gia điểm của BD với AF, CH.
a,CMR tứ giác EMGN là HBH
b,Tìm điều kiện của HBH ABCD để tứ giác EMGN là HCN
a: Gọi O là giao của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AECG có
AE//CG
AE=CG
Do đó: AECG là hình bình hành
=>AG//CE và AG=CE
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AF//CH và AF=CH
Xét ΔANB có
E là trung điểm của AB
EM//AN
Do đó: M là trung điểm của BN
=>BM=MN
Xét ΔDMC có
G là trung điểm của DC
GN//MC
Do đó: N là trung điểm của DM
=>DN=MN=MB=1/3DB
DN=1/3DB
DO=1/2DB
Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)
Xét ΔADC có
DO là trung tuyến
DN=2/3DO
Do đó: N là trọng tâm
=>A,N,G thẳng hàng và C,N,H thẳng hàng
Xét ΔABC có
BO là trung tuyến
BM=2/3BO
Do đó: M là trọng tâm
=>A,M,F thẳng hàng và C,M,E thẳng hàng
Xét ΔEBM và ΔGDN có
EB=GD
\(\widehat{EBM}=\widehat{GDN}\)
BM=DN
Do đó: ΔEBM=ΔGDN
=>EM=GN
Xét tứ giác EMGN có
EM//GN
EM=GN
Do đó: EMGN là hình bình hành
b: Để EMGN là hình chữ nhật thì EG=NM
=>\(AD=\dfrac{BD}{3}\)
cho tứ giác ABCD có AC vuông góc BD . gọi E , F , G , H lần lượt là trung điểm của các cacnhj AB, BC, CD, DA. hỏi tứ giác EFGH là hình gì?Chứng minh
Cho tứ giác ABCD có AC=BD và AC vuông góc BD. Gọi E, F, G, H lần lượt là trung điểm AB, BC, CD, DA. CMR EFGH là hình vuông
Cho tứ giác ABCD có AC = BD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Biết EG = 5cm, HF = 4cm. Tính S EFGH.
Xét ΔBAC có
E là trung điểm của BA(gt)
F là trung điểm của BC(gt)
Do đó: FE là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)
⇒FE//AC và \(FE=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔDAC có
H là trung điểm của AD(gt)
G là trung điểm của DC(gt)
Do đó: HG là đường trung bình của ΔDAC(Định nghĩa đường trung bình của tam giác)
⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra EF//HG và EF=HG
Xét tứ giác EFGH có
EF//HG(cmt)
EF=HG(cmt)
Do đó: EFGH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔBCD có
F là trung điểm của BC(gt)
G là trung điểm của CD(gt)
Do đó: FG là đường trung bình của ΔBCD(Định nghĩa đường trung bình của tam giác)
⇒FG//BD và \(FG=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(3)
Ta có: AC=BD(gt)
nên \(\dfrac{AC}{2}=\dfrac{BD}{2}\)(4)
Từ (2), (3) và (4) suy ra HG=FG
Hình bình hành EFGH có HG=FG(cmt)
nên EFGH là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒\(S_{EFGH}=\dfrac{1}{2}\cdot EG\cdot HF=\dfrac{1}{2}\cdot5\cdot4=10cm^2\)
cho hình chữ nhật ABCD. Gọi E,F,G,H lần lượt là trung điểm của AB, BC,CD, DA. Chứng minh tứ giác EFGH là hình thoi(mình cần gấp lắm ạ)
Xét ΔACB có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔACB
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra EF//HG và EF=HG
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: \(EH=\dfrac{BD}{2}=\dfrac{AC}{2}\left(3\right)\)
Từ (1) và (3) suy ra EF=EH
Xét tứ giác EHGF có
EF//GH
EF=GH
Do đó: EHGF là hình bình hành
mà EF=EH
nên EHGF là hình thoi
Cho tứ giác ABCD có: E,F,G,H lần lượt là trung điểm của AB, BC, CD, DA, biết AB=5cm
a) Tính độ dài HE
b) Tứ giác EFGH là hình gì? Vì sao?
c) Tứ giác ABCD cần có đk gì thì:
+) EFGH là hcn
+) EFGH là hình thoi
+) EFGH là hình vuông
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = AC/2
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = AC/2.
+ Ta có:
EF //AC, HG//AC ⇒ EF // HG.
EF = AC/2; HG = AC/2 ⇒ EF = HG
⇒ tứ giác EFGH là hình bình hành.
có thể giúp mk trả lời phần a ko ạ
cho tứ giác ABCD có AC vuông góc BD . gọi E , F , G , H lần lượt là trung điểm của các cacnhj AB, BC, CD, DA. hỏi tứ giác EFGH là hình gì?Chứng minh
Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Giải thích ?
Tứ giác EFGH là hình chữ nhật.
Giải thích: Theo giả thiết ta có EF, GH lần lượt là đường trung bình của tam giác Δ ABC,Δ ADC
Áp dụng định lí đường trung bình vào hai tam giác ta được
Chứng minh tương tự: EH//FG//BD ( 2 )
Từ ( 1 ) và ( 2 ), tứ giác EFGH có hai cặp cạnh đối song song nên tứ giác EFGH là hình bình hành.
Gọi O là giao điểm của AC và BD, I là giao điểm của EF với BD.
Áp dụng tính chất của các góc đồng vị vào các đường thẳng song song ở trên và giả thiết nên ta có:
Hình bình hành EFGH có một góc vuông nên EFGH là hình chữ nhật.
Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Biết diện tích của tứ giác ABCD là 18 m 2 thì diện tích của tứ giác EFGH là:
A. 9 m 2
B. 5 m 2
C. 6 m 2
D. 7 , 5 m 2
Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên
EF//HG (cùng song song với AC)
HE//FG (cùng song song với BD)
Suy ra tứ giác EFGH là hình bình hành
Mà A C ⊥ B D (gt) ⇒ E F ⊥ F G
Suy ra EFGH là hình chữ nhật
Do đó S E F G H = H E . E F mà E F = 1 2 A C ; H E = 1 2 B D (tính chất đường trung bình)