Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2023 lúc 20:08

a: Gọi O là giao của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AECG có

AE//CG

AE=CG

Do đó: AECG là hình bình hành

=>AG//CE và AG=CE

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AF//CH và AF=CH

Xét ΔANB có

E là trung điểm của AB

EM//AN

Do đó: M là trung điểm của BN

=>BM=MN

Xét ΔDMC có

G là trung điểm của DC

GN//MC

Do đó: N là trung điểm của DM

=>DN=MN=MB=1/3DB

DN=1/3DB

DO=1/2DB

Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)

Xét ΔADC có

DO là trung tuyến

DN=2/3DO

Do đó: N là trọng tâm

=>A,N,G thẳng hàng và C,N,H thẳng hàng

Xét ΔABC có

BO là trung tuyến

BM=2/3BO

Do đó: M là trọng tâm

=>A,M,F thẳng hàng và C,M,E thẳng hàng

Xét ΔEBM và ΔGDN có

EB=GD

\(\widehat{EBM}=\widehat{GDN}\)

BM=DN

Do đó: ΔEBM=ΔGDN

=>EM=GN

Xét tứ giác EMGN có

EM//GN

EM=GN

Do đó: EMGN là hình bình hành

b: Để EMGN là hình chữ nhật thì EG=NM

=>\(AD=\dfrac{BD}{3}\)

la vu xuan minh
Xem chi tiết
Tấn Thành 8a2
29 tháng 10 2021 lúc 10:28

undefined

TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 10:07

loading...  loading...  loading...  loading...  

anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2021 lúc 17:40

Xét ΔBAC có

E là trung điểm của BA(gt)

F là trung điểm của BC(gt)

Do đó: FE là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒FE//AC và \(FE=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔDAC có

H là trung điểm của AD(gt)

G là trung điểm của DC(gt)

Do đó: HG là đường trung bình của ΔDAC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét tứ giác EFGH có

EF//HG(cmt)

EF=HG(cmt)

Do đó: EFGH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔBCD có 

F là trung điểm của BC(gt)

G là trung điểm của CD(gt)

Do đó: FG là đường trung bình của ΔBCD(Định nghĩa đường trung bình của tam giác)

⇒FG//BD và \(FG=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(3)

Ta có: AC=BD(gt)

nên \(\dfrac{AC}{2}=\dfrac{BD}{2}\)(4)

Từ (2), (3) và (4) suy ra HG=FG

Hình bình hành EFGH có HG=FG(cmt)

nên EFGH là hình thoi(Dấu hiệu nhận biết hình thoi)

\(S_{EFGH}=\dfrac{1}{2}\cdot EG\cdot HF=\dfrac{1}{2}\cdot5\cdot4=10cm^2\)

Nguyễn Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:18

Xét ΔACB có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔACB

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: \(EH=\dfrac{BD}{2}=\dfrac{AC}{2}\left(3\right)\)

Từ (1) và (3) suy ra EF=EH

Xét tứ giác EHGF có 

EF//GH

EF=GH

Do đó: EHGF là hình bình hành

mà EF=EH

nên EHGF là hình thoi

phạm thanh tú
Xem chi tiết

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

Khách vãng lai đã xóa
phạm thanh tú
15 tháng 2 2020 lúc 15:14

có thể giúp mk trả lời phần a ko ạ

Khách vãng lai đã xóa
Anh Clodsomnia
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2019 lúc 4:20

Bài tập: Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Tứ giác EFGH là hình chữ nhật.

Giải thích: Theo giả thiết ta có EF, GH lần lượt là đường trung bình của tam giác Δ ABC,Δ ADC

Áp dụng định lí đường trung bình vào hai tam giác ta được

Bài tập: Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Chứng minh tương tự: EH//FG//BD      ( 2 )

Từ ( 1 ) và ( 2 ), tứ giác EFGH có hai cặp cạnh đối song song nên tứ giác EFGH là hình bình hành.

Gọi O là giao điểm của AC và BD, I là giao điểm của EF với BD.

Áp dụng tính chất của các góc đồng vị vào các đường thẳng song song ở trên và giả thiết nên ta có:

Bài tập: Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Hình bình hành EFGH có một góc vuông nên EFGH là hình chữ nhật. 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2018 lúc 13:14

Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên 

EF//HG (cùng song song với AC)

HE//FG (cùng song song với BD)

Suy ra tứ giác EFGH là hình bình hành

Mà  A C ⊥ B D (gt)   ⇒ E F ⊥ F G

Suy ra EFGH là hình chữ nhật

Do đó  S E F G H = H E . E F mà  E F = 1 2 A C ;  H E = 1 2 B D (tính chất đường trung bình)