Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
N.T.M.D
Xem chi tiết
Thu Thao
14 tháng 4 2021 lúc 20:50

undefined

N.T.M.D
Xem chi tiết
Yeutoanhoc
13 tháng 5 2021 lúc 15:45

Áp dụng BĐT cosi:
`x+9/x>=6`
`=>x+1/x`
`=x+9/x-8/x>=6-8/x`
Vì `x>=3=>8/x<=8/3`
`=>6-8/x>=6-8/3=10/3`
Dấu "=" `<=>x=3`

Ling ling 2k7
Xem chi tiết
missing you =
16 tháng 6 2021 lúc 10:09

\(M=A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}+2\sqrt{x}}{\sqrt{x}+3}=\dfrac{3\sqrt{x}}{\sqrt{x}+3}\left(x\ge0\right)\)

Yeutoanhoc
16 tháng 6 2021 lúc 10:09

`M=A+B`

`=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx+3)`

`=(sqrtx+2sqrtx)/(sqrtx+3)`

`=(3sqrtx)/(sqrtx+3)`

Lê Trang
16 tháng 6 2021 lúc 10:16

Với \(x\ge0\), ta có:

\(M=A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) \(=\dfrac{3\sqrt{x}}{\sqrt{x}+3}\) \(=\dfrac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) \(=\dfrac{3x-9\sqrt{x}}{x-9}\)

#Cho mình sửa lại chút nhé! Nãy lag tí :)))

vung nguyen thi
Xem chi tiết
Neet
30 tháng 11 2017 lúc 19:48

a) BĐT \(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\ge0\)

suy ra sai đề

b) BĐT \(\Leftrightarrow\dfrac{\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+xz\right)}{xyz}\ge0\) ( đúng vì \(x\ge y\ge z>0\))

Nam Phạm An
Xem chi tiết
Ngô Bá Hùng
3 tháng 9 2019 lúc 14:54

Ta có:\(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\\ \Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)

Mà:\(x^3+y^4\le x^2+y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\)

Best zanis
Xem chi tiết
Vinh Nguyễn Thành
Xem chi tiết
Nguyễn Thành Trương
29 tháng 4 2019 lúc 15:20

Hỏi đáp Toán

Châu Trần
Xem chi tiết
Lầy Văn Lội
15 tháng 6 2017 lúc 21:40

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

Thắng Nguyễn
15 tháng 6 2017 lúc 21:42

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

Lầy Văn Lội
15 tháng 6 2017 lúc 21:46

vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)

\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều 

Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:12

Hình 12a

Ta thấy các đường thẳng trên hình là \(y = 1;x = 2;y =  - x + 1\)

Từ các phương trình trên thì ta chọn luôn là câu c mà không cần xét tiếp.

Hình 12b.

Ta thấy các đường thẳng trên hình là \(y =  - 1;x =  - 3;x + y =  - 2\)

Từ các phương trình trên thì ta chọn luôn là câu a mà không cần xét tiếp

Trần Huỳnh Tú Trinh
Xem chi tiết