1/ Cho hình vuông ABCD, điểm E thuộc BC. Gọi F là giao điểm AE và CD. Gọi K là giao điểm DE và AB. CMR: CK⊥BF
2/Cho tam giác ABC có AB=9cm, BC=16cm, AC=15cm. CMR: \(\widehat{B}\)=2\(\widehat{C}\)
1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC
2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF
3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF
4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN
5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE
Cho tam giác ABC vuông tại A, có AB= 9cm, BC= 15cm. a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối cua tia AB lấy điểm D sao cho AB=AD. CMR : BC=DC c) Gọi E,F lần lượt là trung điểm cạnh CD,BC; gọi I là giao điểm của BE và AC. Chứng minh D,I,F thẳng hàng.
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
Suy ra: CB=CD
cho tam giác ABC có AC < BC. Tia phân giác của ACB cắt AB tại D. Trên cạnh BC lấy E sao cho CE = AC.
a) CMR: CAD và CED bằng nhau.
b) Kéo dài CA và DE cắt nhau tại F. CMR: EF = AB
c) Gọi I là giao điểm của AE và CD. CMR: CI vuông góc AE
d) Từ A kẻ AK song song DE (K thuộc CD). CMR KE song song AB.
Cho tam giác ABC vuông tại A , AB<AC , I là trung diểm của BC đường trung trực của BC cắt AC tại E, D thuộc tia đối của tia AC sao cho AD=AE nối B với E . CMR
a,\(\widehat{BDE}=2\widehat{ACB}\)
b, Gọi M là giao điểm của AI và BD . CM : MD=AD;MB=AC
c,DE<BC
d, Gọi K là giao điểm EI và BA . Cm : BE\(⊥\)KC
e, Tìm điều kiện của tam giác ABC để AI\(⊥\) BE
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Cho hình vuông ABCD , điểm E thuộc cạnh BC. Gọi F là giao điểm của AE và CD, G là giao điểm của DE và BF. a) Gọi I và K theo thứ tự là giao điểm của AB với CD và DG. Chứng minh rằng IE song song với BD. b) Chứng minh rằng AE vuông góc với CG
1/Cho hình vuông ABCD, lấy điểm E thuộc AB. Gọi F là giao điểm của DE và BC.
CMR 1/DA2=1/DE2+1/DF2
2/Cho tam giác ABC vuông tại A, lấy điểm E thuộc AC, D thuộc AB.
CM: CD2-CB2=ED2-EB2
1)
Kẻ tia Dx vuông góc với DF, Dx cắt BC tại M
tam giác DFM vuông tại D có DC là đường cao
dựa vào hệ thức lượng tam giác vuông, ta có:
\(\frac{1}{DF^2}+\frac{1}{DM^2}=\frac{1}{DC^2}\)
Mà DM = ED (chứng minh tam giác AED = tam giác CMD)
DC = AD (hình vuông ABCD)
=> đpcm
cho tam giác ABC có AB =15cm, AC =20cm.Trên cạnh AB, AC lấy D, E sao cho AD =8cm, AE =6cm.
a) chứng minh tam giác ACD~ tam giác ABE
b) gọi H là giao điểm BE và CD. c/m: HB.HE=HD.HC
c) gọi F là giao điểm DE và BC. c/m: S tam giác FEC= 4S tam giác FBD
a: Xét ΔACD và ΔABE có
\(\dfrac{AC}{AB}=\dfrac{AD}{AE}\left(\dfrac{20}{15}=\dfrac{8}{6}=\dfrac{4}{3}\right)\)
\(\widehat{CAD}\) chung
Do đó: ΔACD~ΔABE
b: Ta có: ΔACD~ΔABE
=>\(\widehat{ACD}=\widehat{ABE}\) và \(\widehat{AEB}=\widehat{ADC}\)
Xét ΔHDB và ΔHEC có
\(\widehat{HBD}=\widehat{HCE}\)
\(\widehat{DHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHDB~ΔHEC
=>\(\dfrac{HD}{HE}=\dfrac{HB}{HC}\)
=>\(HD\cdot HC=HB\cdot HE\)
c: Ta có: AD+DB=AB
=>DB=15-8=7(cm)
Ta có: AE+EC=AC
=>EC+6=20
=>EC=14(cm)
Xét ΔADE và ΔACB có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(\dfrac{8}{20}=\dfrac{6}{15}=\dfrac{2}{5}\right)\)
\(\widehat{A}\) chung
Do đó: ΔADE~ΔACB
=>\(\widehat{ADE}=\widehat{ACB}\)
mà \(\widehat{ADE}=\widehat{FDB}\)
nên \(\widehat{FDB}=\widehat{FCE}\)
Xét ΔFDB và ΔFCE có
\(\widehat{FDB}=\widehat{FCE}\)
\(\widehat{F}\) chung
Do đó: ΔFDB~ΔFCE
=>\(\dfrac{S_{FDB}}{S_{FCE}}=\left(\dfrac{BD}{CE}\right)^2=\dfrac{1}{4}\)
=>\(S_{FCE}=4\cdot S_{FDB}\)
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD. Cmr:
a. BE=CD
b. tam giác BMD=CME
c. AM là p/g góc BAC
d. Cm: DE // BC
e. Gọi O là giao điểm của AM và BC. Cm: AM vuông góc BC. M là trung điểm BC. Tính AO biết BC=12cm, ab=10cm
g. Kẻ BH vuông góc AC. Cmr: AB^2 + AC^2 + BC^2 = CH^2 + 2AH^2 + BH^2
GIÚP MÌNH CÂU G VỚI