Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trà My
Xem chi tiết
Emily Nain
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 20:44

ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)

Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:44

Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)

Nguyễn Ngọc Linh
5 tháng 7 2021 lúc 20:48

Biểu thức trên có nghĩa khi \(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le1\end{matrix}\right.\)

nguyễn công quốc bảo
Xem chi tiết
Chuu
26 tháng 10 2023 lúc 20:02

`sqrt(x-5)` có nghĩa khi:

`x-5 ≥0`

`=> x ≥5`

Vậy `x≥5` thì `sqrt(x-5` có nghĩa

____________

`1/(sqrt(3x-2))` có nghĩa khi

`1/(sqrt(3x-2)) ≥0`

`⇒ 3x-2≥0`

` ⇒3x≥2`

` ⇒x≥2/3`

Vậy `x ≥2/3` thì `1/(sqrt(3x-2))` có nghĩa

lê Ngọc Trang Vy
Xem chi tiết
Trần Ngọc Diệp
Xem chi tiết
Thư Phan
21 tháng 6 2023 lúc 16:03

\(\sqrt{x^2-x+1}\) có nghĩa khi \(x^2-x+1\ge0\)

Ta có \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x, ta có \(\left(x-\dfrac{1}{2}\right)^2\ge0\)    

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)  (vì 3/4 > 0)

Do đó \(x^2-x+1>0\) với mọi x

Vậy với bất cứ giá trị nào của x thì căn thức trên xác định.

 

Phùng Công Anh
21 tháng 6 2023 lúc 15:55

ĐKXĐ: `x\inRR`

Vì `x^2-x+1=(x^2-x+1/4)+3/4=(x-1/2)^2+3/4>0AAx`

Giúp mik với mấy bn ơi C...
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 14:01

ĐKXĐ: \(x\ne1\)

Nguyễn Đỗ Minh Anh
4 tháng 9 2021 lúc 14:01

x ≥ 1; -1

Hồng Phúc
4 tháng 9 2021 lúc 14:15

\(\sqrt{\dfrac{1}{x^2-2x+1}}=\sqrt{\dfrac{1}{\left(x-1\right)^2}}=\dfrac{1}{\left|x-1\right|}\)

\(\Rightarrow\) Biểu thức xác định khi \(x-1\ne0\Leftrightarrow x\ne1\).

Trà My
Xem chi tiết
Phan Nghĩa
4 tháng 7 2020 lúc 14:22

Để biểu thức có nghĩa thì +) trong căn luôn luôn >= 0

+) mẫu khác 0

Áp dụng vào bài ta có đk của x : \(\hept{\begin{cases}x\ge0\\x\ne\pm1\end{cases}}\)

Vậy để biểu thức trên có nghĩa thì \(\hept{\begin{cases}x\ge0\\x\ne\pm1\end{cases}}\)

Khách vãng lai đã xóa
Vy Pleut
Xem chi tiết
Phan Quang An
17 tháng 6 2017 lúc 22:16


dễ quá
Chỉ cần mẫu nó khác 0 là đc 
a, x § -2
b, x § 2
§ là khác nhé!!! :v

Trần Duy Thanh
17 tháng 6 2017 lúc 22:15

a) \(\sqrt{x+2}\ne0\Leftrightarrow x+2\ne0\Leftrightarrow x\ne-2\)

b) \(1-\sqrt{x^2-3}\ne0\Leftrightarrow\sqrt{x^2-3}\ne1\Leftrightarrow x^2-3\ne1\Leftrightarrow x^2\ne4\Leftrightarrow x\ne^+_-4\)

                                                                               (chỗ này là bình phương 2 vế lên)

Vy Pleut
17 tháng 6 2017 lúc 22:22

ớ chỉ k được 1 câu trả lời thôi à ;v;

Xem chi tiết
An Thy
14 tháng 7 2021 lúc 19:04

Để \(\sqrt{x^2+3}\) có nghĩa thì \(x^2+3\ge0\) (luôn đúng)

Để \(\sqrt{\left(x-1\right)\left(x+2\right)}\) có nghĩa thì \(\left(x-1\right)\left(x+2\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 22:50

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\)