Để bt sau có nghĩa
\(\sqrt{x+1}\ge0\Rightarrow x+1\ge0\Leftrightarrow x\ge-1\)
Vậy với \(x\ge-1\)thì bt sau có nghĩa
Để bt sau có nghĩa
\(\sqrt{x+1}\ge0\Rightarrow x+1\ge0\Leftrightarrow x\ge-1\)
Vậy với \(x\ge-1\)thì bt sau có nghĩa
tìm điều kiện của x để các biểu thức sau có nghĩa
\(\frac{1}{\sqrt{x+2\sqrt{x-1}}}\)
Tìm điều kiện x để các biểu thức sau có nghĩa
\(\sqrt{x-5}\) \(\dfrac{1}{\sqrt{3x-2}}\)
Cho biểu thức sau: \(P=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
Tìm điều kiện để P có nghĩa và rút gọn P
tìm điều kiện của x, y để biểu thức sau có nghĩa
\(\frac{\sqrt{x}}{|x|-1}\)
Tìm điều kiện của x để các biểu thức sau có nghĩa
a) \(\frac{1+x}{\sqrt{x+2}}\)
b) \(\frac{1}{1-\sqrt{x^2-3}}\)
Cho biểu thức: \(M=\frac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)
a, Tìm điều kiện để biểu thức M có nghĩa
b, C/minh: Biểu thức M không phụ thuộc vào biến.
tìm điều kiện của x để biểu thức sau có nghĩa
\(\sqrt{x-2\sqrt{x-1}}\)
Cho biểu thức:
\(P=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
a, Tìm điều kiện của x để biểu thức P có nghĩa và rút gọn biểu thức P
b, Tìm các giá trị nguyên của x để biểu thức\(Q=P-\sqrt{x}\) nhận giá trị nguyên
1. Tính x để căn thức sau có nghĩa:
\(\sqrt{\frac{-2x}{x^2-\text{3}x+9}}\)
2. Tìm các giá trị nguyên của x để các biểu thức sau có nghĩa:
a/A=\(\frac{\sqrt{x}+\text{3}}{\sqrt{x}-2}\)
b/B=\(\frac{2\sqrt{x}-1}{\sqrt{x}+\text{3}}\)
3. Cho biểu thức P= (\(\frac{\sqrt{x}}{\sqrt{x}-1}\)-\(\frac{1}{x-x\sqrt{x}}\): (\(\frac{1}{\sqrt{x}+1}\)+\(\frac{2}{x-1}\))
a/ Tìm điều kiện x để P xđ: Rút gọn
b/ Tìm các giá trị của P để P <0
c/ Tính giá trị của P khi x=4-2\(\sqrt{\text{3}}\)