Rút gọn biểu thức: B=\(\sqrt{a+2\sqrt{a-1}}\)+\(\sqrt{a-2\sqrt{a-1}}\)
Bài 1.Rút gọn A = \(\sqrt{x^2+\dfrac{2x^2}{3}}\) với x<0
Bài 2.Rút gọn biểu thức \(\left(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{\sqrt{30}-\sqrt{6}}{\sqrt{5}-1}\right)\):\(\dfrac{2}{2\sqrt{5}-\sqrt{6}}\)
Bài 3.Cho ba biểu thức A = a\(\sqrt{b}\) + b\(\sqrt{a}\);B = \(a\sqrt{a}-b\sqrt{b}\) ;C = a-b.Trong ba biểu thức trên biểu thức bằng biểu thức \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) với a,b>0
Bài 7.Cho B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{98}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).Giá trị của biểu thức B là
Bài 8.Gọi M là giá trị nhỏ nhất của \(\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\) và N là giá trị lớn nhất của \(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\).Tìm M và N
Giúp mình với!Mình đang cần gấp
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
Rút gọn biểu thức B = ((1 - a * sqrt(a))/(1 - sqrt(a)) + sqrt(a)) * ((1 - sqrt(a))/(1 - a)) ^ 2
ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)
\(B=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right)\left(\dfrac{\sqrt{a}-1}{a-1}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}+\sqrt{a}\right)\left(\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)
\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\cdot\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
Câu 1: Rút gọn biểu thức: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)(với a \(\ge\) 0;a \(\ne\)1)
Câu 2: Rút gọn biểu thức: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)(với a\(\ge\)0; a\(\ne\)1)
Câu 2:
Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
Câu 1:
Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=1\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
Bài 1: Tính \(a^2+b^2\) khi viết biểu thức \(\sqrt{17-12\sqrt{2}}\) về dạng \(a+b\sqrt{2}\)
Bài 2: Rút gọn biểu thức
a) \(\dfrac{\sqrt{a}-1}{a\sqrt{a}+\sqrt{a}-a}:\dfrac{1}{a^2+a}\)
Bài 1:
\(\sqrt{17-12\sqrt{2}}=\sqrt{17-2\sqrt{72}}=\sqrt{8-2\sqrt{8.9}+9}=\sqrt{(\sqrt{8}-\sqrt{9})^2}\)
\(=|\sqrt{8}-\sqrt{9}|=3-2\sqrt{2}\)
\(\Rightarrow a=3; b=-\sqrt{2}\)
\(\Rightarrow a^2+b^2=9+2=11\)
Bài 1:
Ta có: \(\sqrt{17-12\sqrt{2}}=a+b\sqrt{2}\)
\(\Leftrightarrow a+b\sqrt{2}=3-2\sqrt{2}\)
Suy ra: a=3; b=-2
\(\Leftrightarrow a^2+b^2=3^2+\left(-2\right)^2=9+4=13\)
Bài 2:
a) Ta có: \(\dfrac{\sqrt{a}-1}{a\sqrt{a}+\sqrt{a}-a}:\dfrac{1}{a^2+a}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{a\left(a+1\right)}{1}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+1\right)}{\left(a-\sqrt{a}+1\right)}\)
rút gọn biểu thức a
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a/ rút gọn A
b/ tìm giá trị để A dương
a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
Rút gọn các biểu thức sau:
a)\(\sqrt{8}-2\sqrt{50}+\sqrt{18}\) b)\(\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\) (với a>0;a\(\ne1\))
\(a.\sqrt{8}-2\sqrt{50}+\sqrt{18}=2\sqrt{2}-10\sqrt{2}+3\sqrt{2}=\sqrt{2}\left(2-10+3\right)=-5\sqrt{2}\)
\(b.\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\dfrac{2\sqrt{a}}{1+\sqrt{a}}\left(đk:a\ge0;a\ne1\right)\)
\(=\left(\sqrt{a}+\sqrt{a}\right).\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=2\sqrt{a}.\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=1+\sqrt{a}\)
(Chỗ điều kiện bài b mik thấy a = 0 cũng có thể là nghiệm nên mik sửa lại nhé)
b. \(=\left(\dfrac{\sqrt{a}-a+a\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(\dfrac{2\sqrt{a}}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\)
\(=1-a\)
Rút gọn biểu thức :\(\frac{\sqrt{a^3}-\sqrt{b^3}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}:\frac{a^{-2}-b^{-2}}{a^{-1}-b^{-1}}\)
A)\(\sqrt{25x-25}\)-\(\dfrac{15}{2}\)\(\sqrt{\dfrac{x-1}{9}}\)=6+\(\sqrt{x-1}\)
B) A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{x\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt điều kiện để biểu thức có nghĩa A
b) Rút gọn biểu thức A
A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)
Vậy, x=17
A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
=>5/2*căn x-1-căn x-1=6
=>3/2*căn x-1=6
=>căn x-1=4
=>x-1=16
=>x=17
B:
a: ĐKXĐ: x>=0; x<>1
b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
=căn x-1+x-căn x+1
=x
B) a) \(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b)Sửa đề \(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+x-\sqrt{x}+1=x\)