Cho \(y=3x^2+6x+5\) với mọi x thuộc R
a)Tìm GTNN của hàm số
b)C/m hàm số đồng biến với mọi x > -1 và nghịch biến với mọi x<-1
cho y=1/3x³-(m-2)x²+(m²-3m+2)x+3. tìm m để a)Hàm số đồng biến với mọi x thuộc (2;dương vô cùng) b)Hàm số đồng biến với mọi x thuộc (trừ âm vô cùng;0) c)Hàm số nghịch biến với mọi x thuộc (-2;3)
\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)
a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)
Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)
TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)
Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m
b.
Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x< 0\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)
TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Kết hợp lại ta được: \(m\ge2\)
c.
Hàm số nghịch biến trên khoảng đã cho khi và chỉ khi:
\(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-4m+3\le0\) ; \(\forall x\in\left(-2;3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1\le-2< 3\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\f\left(-2\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\4+4\left(m-2\right)+m^2-4m+3\le0\\9-6\left(m-2\right)+m^2-4m+3\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2\le1\\m^2-10m+24\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Cho \(y=3x^2+6x+5\) với mọi x thuộc R
a)Tìm GTNN của hàm số
b)C/m hàm số đồng biến với mọi x > -1 và nghịch biến với mọi x<-1
Lời giải:
a) Ta thấy:
\(y=3x^2+6x+5=3(x^2+2x+1)+2\)
\(=3(x+1)^2+2\)
Vì \((x+1)^2\ge 0, \forall x\in\mathbb{R}\Rightarrow y\geq 3.0+2=2\)
Vậy GTNN của $y$ là $2$ tại \((x+1)^2=0\Leftrightarrow x=-1\)
b)
Xét \(x_1,x_2\in\mathbb{R}|x_1,x_2>-1\). Giả sử \(x_1>x_2\)
Khi đó:
\(y(x_1)-y(x_2)=3x_1^2+6x_1+5-(3x_2^2+6x_2+5)\)
\(=3(x_1^2-x_2^2)+6(x_1-x_2)\)
\(=3(x_1+x_2)(x_1-x_2)+6(x_1-x_2)\)
\(=3(x_1-x_2)(x_1+x_2+2)\)
Vì \(x_1>x_2>-1\Rightarrow x_1-x_2>0; x_1+x_2+2>0\)
Do đó: \(y(x_1)-y(x_2)=3(x_1-x_2)(x_1+x_2+2)>0\Rightarrow y(x_1)>y(x_2)\)
Với mọi \(x_1>x_2>-1\in\mathbb{R}\) thì \(y(x_1)>y(x_2)\) nên hàm số đồng biến với mọi $x>-1$
Chứng minh nghịch biến hoàn toàn tương tự, ta chỉ cần chỉ ra \(y(x_1)< y(x_2)\) theo cách trên là được.
Cho y=-1/3x³+(m-3)x²+(m+4)x-2. Tìm m để a)Hàm số nghịch biến với mọi x thuộc (-1;3) b) Hàm số nghịch biến với mọi x thuộc (2;4)
\(y'=-x^2+2\left(m-3\right)x+m+4\)
a.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi: với mọi \(x\in\left(-1;3\right)\) ta có:
\(f\left(x\right)=-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Delta'=\left(m-3\right)^2+m+4=m^2-5m+13>0\) ; \(\forall m\)
Bài toán thỏa mãn khi:
\(\left[{}\begin{matrix}3\le x_1< x_2\\x_1< x_2\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}f\left(3\right)\le0\\\dfrac{x_1+x_2}{2}>3\end{matrix}\right.\\\left\{{}\begin{matrix}f\left(-1\right)\le0\\\dfrac{x_1+x_2}{2}< -1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}7m-23\le0\\m-3>3\end{matrix}\right.\\\left\{{}\begin{matrix}-m+9\le0\\m-3< -1\end{matrix}\right.\end{matrix}\right.\)
Không tồn tại m thỏa mãn
b.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi:
\(\forall x\in\left(2;4\right)\) ta có:
\(-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Leftrightarrow x^2+6x-4\ge m\left(2x+1\right)\)
\(\Leftrightarrow m\le\dfrac{x^2+6x-4}{2x+1}\)
\(\Leftrightarrow m\le\min\limits_{\left[2;4\right]}\dfrac{x^2+6x-4}{2x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{x^2+6x-4}{2x+1}\) trên \(\left[2;4\right]\)
\(f'\left(x\right)=\dfrac{x^2+x+7}{2\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow m\le f\left(2\right)=\dfrac{12}{5}\)
Cho hàm số y=-x³+mx²-3x+4. Tìm m để hàm số nghịch biến với mọi x thuộc R. Làm theo cách lập bảng biến thiên
Cho hàm số y=x³-3x²+mx+1. Tìm m để hàm số nghịch biến với mọi x thuộc (-1;0)
\(y'=3x^2-6x+m\)
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi \(y'\le0\) ; \(\forall x\in\left(-1;0\right)\)
\(\Leftrightarrow m\le-3x^2+6x\) ; \(\forall x\in\left(-1;0\right)\)
\(\Leftrightarrow m\le\min\limits_{\left(-1;0\right)}\left(-3x^2+6x\right)\)
Xét hàm \(f\left(x\right)=-3x^2+6x\) trên \(\left(-1;0\right)\)
\(-\dfrac{b}{2a}=1\notin\left(-1;0\right)\) ; \(f\left(-1\right)=-9\) ; \(f\left(0\right)=0\)
\(\Rightarrow m\le-9\)
Câu 1: Cho hàm số y = (3m + 5) x\(^2\) với m \(\ne\) \(\dfrac{-5}{3}\). Tìm các giá trị của tham số m để hàm số:
a) Nghịch biến với mọi x > 0
b) Đồng biến với mọi x >0
c) Đạt giá trị lớn nhất là 0
d) Đạt giá trị nhỏ nhất là 0
Câu 2: Cho hàm số y = \(\left(\sqrt{3k+4}-3\right)x^2\) với k \(\ge\dfrac{-4}{3}\); k \(\ne\dfrac{5}{3}\)
Tính các giá trị của tham số K để hàm số:
a) Nghịch biến với mọi x >0
b) Đồng biến với mọi x >0
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = x 2 ( x - 2 ) ( x 2 - 6 x + m ) , với mọi x ∈ R . Có bao nhiêu số nguyên m thuộc đoạn - 2019 ; 2019 để hàm số g ( x ) = f ( 1 - x ) nghịch biến trên khoảng - ∞ ; - 1
A. 2012
B. 2011
C. 2009
D. 2010
y=x³-3mx²+3(3m-4)x+2. Tìm m để a)Hàm số đồng biến với mọi x thuộc (trừ âm vô cùng;1) b) Hàm số đồng biến với mọi x thuộc (2; dương vô cùng)
\(y'=3x^2-6mx+3\left(3m-4\right)=3\left[x^2-2mx+3m-4\right]\)
Xét \(f\left(x\right)=x^2-2mx+3m-4\)
\(\Delta'=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\) ;\(\forall m\)
a. Để hàm số đồng biến trên khoảng đã cho
\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\le1\)
\(\Leftrightarrow1\le x_1< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-2m+1\ge0\\2m>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge3\)
b.
Để hàm đồng biến trên khoảng đã cho
\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\ge2\)
\(\Leftrightarrow x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-4m+4\ge0\\2m< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow m\le0\)
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f ' x = x 2 x - 2 x 2 - 6 x + m với mọi x ∈ ℝ Có bao nhiêu số nguyên m thuộc đoạn [-2019;2019] để hàm số g(x)=f(1-x) nghịch biến trên khoảng - ∞ ; - 1
A. 2010
B. 2012
C. 2011
D. 2009