Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vuong Tran Minh
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Đỗ Việt Nhật
31 tháng 12 2017 lúc 17:21

a)3^n+2-3^n+1-6.3^n=3^n.9-3^n.3+6.3^n

=3^n(9-4+6)

=3^n.11

Lê Ngọc Trâm
31 tháng 12 2017 lúc 19:34

a)3^n.11

Lê Thị Minh Thư
Xem chi tiết
Nguyễn Đăng Diện
26 tháng 9 2016 lúc 20:39

a)\(3^{n+2}-3^{n+2}+6.3^n=0+6.3^n\)

b) 

châm nguyễn
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2023 lúc 20:16

Chọn B

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2022 lúc 23:10

\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)

\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)

\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)

\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)

\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)

Zz Victor_Quỳnh_Lê zZ
Xem chi tiết
ngonhuminh
8 tháng 1 2017 lúc 23:11

\(A=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

\(B=\left(n-1\right)+..+2+1=\frac{\left(n-1\right)n}{2}\)

\(A+n+B=\frac{\left(n-1\right)n}{2}+n+\frac{\left(n-1\right)n}{2}=\left(n-1\right)n+n=n^2\)

n là tự nhiên \(\sqrt{n^2}=n\)

Chàng Trai 2_k_7
Xem chi tiết
Xyz OLM
18 tháng 1 2020 lúc 20:21

Ta có : \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=\sqrt{2\left(1+2+3+...+n-1\right)+n}\)

\(=\sqrt{2\left(n-1\right).\left(n-1+1\right):2+n}=\sqrt{\left(n-1\right).n+n}=\sqrt{\left(n-1+1\right).n}=\sqrt{n^2}=n\)

Khách vãng lai đã xóa
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 7:48

\(A=\dfrac{n!+2}{\dfrac{n!}{\left(n-k\right)!}\cdot n!-k}+\dfrac{3003+10010+6435}{19448}\)

\(=\dfrac{n!+2}{n\left(n-1\right)\cdot...\cdot\left(n-k+1\right)\cdot n!-k}+1=\dfrac{n!+2+\dfrac{n!^2}{\left(n-k\right)!}-k}{\dfrac{n!^2}{\left(n-k\right)!}-k}\)

\(B=\dfrac{n!-\left(n-1\right)!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!\left(n-1\right)}{\left(n-2\right)!}=\left(n-1\right)^2=n^2-2n+1\)