Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thắng Nguyễn
Xem chi tiết
Tuấn
1 tháng 8 2016 lúc 22:06

ta sử dụng bđt :\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)(dk mọi abcd)
cái này cm dễ thôi. bunhia nha
ĐĂT :\(A=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)
\(\Rightarrow A=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{y\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{z\sqrt{3}}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}\right)^2}\)
Áp dingj bđt trên ta được \(A\ge\sqrt{\left(x+\frac{y}{2}+y+\frac{z}{2}+z+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}+\frac{y\sqrt{3}}{2}+\frac{z\sqrt{3}}{2}\right)^2}\)
\(\Rightarrow A\ge\sqrt{\frac{9}{4}\left(x+y+z\right)^2+\frac{3}{4}\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)\)(dpcm)
Dấu = xảy ra khi và chỉ khi x=y=z

Mr Lazy
2 tháng 8 2016 lúc 9:37

\(\sqrt{x^2+xy+y^2}=\sqrt{\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2}\ge\sqrt{\frac{3}{4}\left(x+y\right)^2}=\frac{\sqrt{3}}{2}\left(x+y\right)\)

%Hz@
15 tháng 3 2020 lúc 8:50

cách khác

ÁP DỤNG BĐT Mincopxki

\(VT=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(x+\frac{z}{2}\right)^2+\frac{3z^2}{4}}\)

\(\ge\sqrt{\left(x+y+z+\frac{x+y+z}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(=\sqrt{\frac{9\left(x+y+z\right)^2}{4}+\frac{3\left(x+y+z\right)^2}{4}}\)

\(=\sqrt{3\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)=VP\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
đức trung okay
26 tháng 8 2017 lúc 6:24

KON 'NICHIWA ON" NANOKO: chào cô

Vũ Thu Mai
Xem chi tiết
Y
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2019 lúc 20:46

Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)

Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)

Giải:

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)

\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)

\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)

Nguyễn Việt Lâm
21 tháng 2 2019 lúc 20:28

Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?

Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn

Y
21 tháng 2 2019 lúc 20:32

nhầm nha: x, y, z > 0leu

NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:37

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{1}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{4}\left(x+y\right)^2}=\sqrt{\frac{3}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{3}}{2}\left(x+y\right)+\frac{\sqrt{3}}{2}\left(y+z\right)+\frac{\sqrt{3}}{2}\left(z+x\right)=\sqrt{3}\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

Lê Thị Khánh Huyền
Xem chi tiết
Akai Haruma
16 tháng 7 2019 lúc 23:07

Lời giải:

Ta thấy:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)

\(\geq \frac{3}{4}(x+y)^2\) với mọi $x,y>0$
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}(y+z); \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}(x+z)\)

Cộng theo vế các BĐT trên và rút gọn:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

Nguyễn Minh Huy
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Kiệt Nguyễn
23 tháng 5 2020 lúc 13:34

Với x, y, z dương, ta cần chứng minh: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\sqrt{3}\left(x+y+z\right)\)(1)

Phân tích: Trong BĐT (1), các biến được hoán vị vòng quanh và đẳng thức xảy ra khi x = y = z. Ta chọn được các số n, m để có bất đẳng thức \(\sqrt{x^2+xy+y^2}\ge nx+my\)(2)

Tương tự rồi cộng theo vế, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\left(m+n\right)\left(x+y+z\right)\)

Nhìn vào BĐT cần chứng minh ta thấy nếu tìm được cặp (n,m) thì lời giải thành công. Thế \(m=\sqrt{3}-n\)vào (2), ta có:

\(\sqrt{x^2+xy+y^2}\ge nx+\left(\sqrt{3}-n\right)y\)\(\Leftrightarrow\sqrt{\left(\frac{x}{y}\right)^2+\left(\frac{x}{y}\right)+1}\ge n.\left(\frac{x}{y}\right)+\left(\sqrt{3}-n\right)\)(3)

Đặt \(t=\frac{x}{y}\)BĐT (3) trở thành \(\sqrt{t^2+t+1}\ge nt+\sqrt{3}-n\)(4)

Do đẳng thức xảy ra khi x = y nên t = 1 ta phân tích (4) về nhân tử (t - 1)

Ta có: \(\left(4\right)\Leftrightarrow\left(\sqrt{t^2+t+1}-\sqrt{3}\right)-n\left(t-1\right)\ge0\)\(\Leftrightarrow\left(t-1\right)\left[\frac{t+2}{\sqrt{t^2+1+1}+\sqrt{3}}-n\right]\ge0\)

\(\Leftrightarrow n\le\frac{t+2}{\sqrt{t^2+t+1}+\sqrt{3}}\). Đồng nhất t = 1, ta được: \(n=\frac{\sqrt{3}}{2}\Rightarrow m=\frac{\sqrt{3}}{2}\)

Lúc đó ta có BĐT phụ: \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)

Giải: Xét BĐT phụ \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(x-y\right)^2\ge0\)*đúng*

Tương tự cho các BĐT còn lại, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)

\(\ge\frac{\sqrt{3}\left(x+y+z\right)+\sqrt{3}\left(x+y+z\right)}{2}=\sqrt{3}\left(x+y+z\right)\)

Đẳng thức xảy ra khi x = y = z.

Khách vãng lai đã xóa
Inequalities
23 tháng 5 2020 lúc 13:36

Thật ra bài này không cần giãi kĩ như mình đây, bước đầu là bước nháp của mình, ghi luôn để các bạn hiểu tại sao lại có BĐT phụ thế kia

Nhưng bạn có thể làm 1 cách dễ hơn mà ko cần phải bỏ nhiều công sức nháp

Có: \(\sqrt{x^2+xy+y^2}=\sqrt{\left(x+y\right)^2-xy}\)

\(\ge\sqrt{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}}=\frac{\sqrt{3}\left(x+y\right)}{2}\)

Đến đây tương tự rồi cộng lại, Done.

Khách vãng lai đã xóa
Hacker666
23 tháng 5 2020 lúc 13:30

alert("@@");
window.open("https://www.facebook.com/duongdzin","_self");

Khách vãng lai đã xóa