Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tất Đạt

CMR: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)

Với x;y;z > 0.

Thắng Nguyễn
1 tháng 8 2018 lúc 21:17

Áp dụng BĐT Mincopxki ta có:

\(VT=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(x+\frac{z}{2}\right)^2+\frac{3z^2}{4}}\)

\(\ge\sqrt{\left(x+y+z+\frac{x+y+z}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(=\sqrt{\frac{9\left(x+y+z\right)^2}{4}+\frac{3\left(x+y+z\right)^2}{4}}\)

\(=\sqrt{3\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)=VP\)


Các câu hỏi tương tự
Thắng Nguyễn
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Trần Thanh Hải
Xem chi tiết
Trâm Lê
Xem chi tiết