giai phuong trinh
\(2x^2+x+5=0\)
\(2x^2-2x+8=0\)
Giai cac phuong trinh sau
a)x^2- 10=0
b)2x^2- 6=0
c)x^2- can bac 5=0
a)x2-10=0
<=>x2=10
<=>x=\(\sqrt{10}\)hoặc \(-\sqrt{10}\)
b)2x2-6=0
<=>2x2=6
<=>x=3
<=>x=\(\sqrt{3}\)hoặc\(-\sqrt{3}\)
c)câu này mk chưa hiểu đề cho lắm
giai phuong trinh
a)2x^2 + 3xy + y^2 = 0
b) (x+1)(x+3)(x+5)(x+7)+15=0
b) (x+1)(x+7)(x+3)(x+5)+15=0
=> (x^2+7x+x+7)(x^2+5x+3x+15)+15=0
=> (x^2+8x+7)(x^2+8x+15)+15=0
giai phuong trinh : \(2x^2\left(5-\sqrt[3]{5x-x^3}\right)=2x^3+17x-8\)
giai phuong trinh
1, -3x \(\ge\)\(\frac{1}{5}\)
giai bat phuong trinh
a,\(|2-x|+5=0\)
b, \(|3-2x|+x=0\)
c,\(2x-|x+4|=7\)
Giai bat phuong trinh : (x2+2x+4)(x-1)<0
\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)
\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
giai phuong trinh:2x3-x2-13x-6=0
Giai phuong trinh:
c1. x^4+x^3-8x^2-9x-9=0
c2. x^4+2x^3-3x^2-8x-4=0
c3. x^4 +2x^3-3x^2-8x-4=0
Với dạng bài này ta chỉ việc chia hoocne là ra nhé!
\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)
\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
\(x^4+x^3+3x^2+2x+2=0\) (giai phuong trinh)
\(x^4+3x^2+x^3+2x+2=0\)
\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)
Do 2 thừa số ở VT đều > 0
\(\Rightarrow\) PTVN
\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
giai phuong trinh
x4 - 5x2 - 2x + 3 = 0
\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)