3x - 3xy - 2y = -9
Tìm x, y thuộc Z
Tìm x, y thuộc Z biết
a, 3xy-3x-y=0
b, 5xy+5x+2y=16
a, 3x(y-1)-y=0
3x(y-1)-(y-1)-1=0
(y-1)(3x-1)=0+1
(y-1)(3x-1)=1 Vậy (y-1) và (3x-1) là ước của 1
Ư(1)+{1;-1}
th1 y-1=1 suy ra y=2 suy ra 3x-1=-1 suy ra x=0
th2 y-1=-1 suy ra y=0 suy ra 3x-1=1 suy ra x thuộc rỗng
b, 5x(y+1)+2y=16
5x(y+1)+2(y+1)-2=16
(y+1)(5x+2)=16+2
(y+1)(5x+2)=18
Vậy (y+1) và (5x+2) thuộc ước của 18
Ư(18)={1;18;2;9;3;6;-1;-18;-2;-9;-3;-6}
Cậu liệt kê nữa là xong
ngay xua co mot con chim. mui no o duoi dit. 1 hom no ngoi xuong dat va no chet.
TÌM X,Y THUỘC Z BIẾT
xy+x-2y=3
3x+5y+175
3xy+6x+y_32=0
2x+5y+3xy=8
4xy-3(x+y)=59
xy-x-y=2
Tìm x;y;z thuộc Z biết:
a)2x2+3xy-2y2=7
b)3x2-4y2=13
TÌM X,Y THUỘC Z BIẾT
a) xy+x-2y=3
b) 3x+5y=175
c) 3xy+7y-32=0
link tham khảo:
https://pnrtscr.com/kprkc7
tính x,y thuộc Z biết:
a) x^2+2y^2+3xy+3x+5y=15
b)8x^2+23y^2+16x-44y+16xy-1180=0
Tìm x,y thuộc Z thỏa mãn
a) 5x+30=-3xy+9y^2
b) 5x+25=-3y+8y^2
c) x^3-x^2.y +3x-2y-5=0
d) x^2+2y^2+2xy+y-2=0
Tính giá trị của biểu thức:
a/ (x+ y+ z)2 + (z -2y)2 + 2( x+y+z) (2y-z) tại x=3 ; y= -5; z=1
b/(y-3x)2 + (x+y-z)2 - 2(y-3x)(x+y-z) tại x=-2; y=-2017; z=-2
c/ x3 + 3xy+ y3 biết x+y=1
d/ x3 - 3xy - y3 biết x-y=1
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
d) \(x^3-3xy-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=\left(x^2+xy+y^2\right)-3xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
\(=1^2=1\)
@Đoàn Đức Hiếu lm a,b đi nhé
tìm x , y thuộc z
x^2 + 3xy+2y^2+x+2y-4=0
Phân tích đa thức thành nhân tử x^3-3x^2y+3xy^2-y^3-z^z^3
x^2-y^2+8x+6y+7
x³ - 3x²y + 3xy² - y³ - z³
= (x³ - 3x²y + 3xy² - y³) - z³
= (x - y)³ - z³
= (x - y - z)[(x - y)² + (x - y)z + z²]
= (x - y - z)(x² - 2xy + y² + xz - yz + z³)
--------------------
x² - y² + 8x + 6y + 7
= (x² + 8x + 16) - (y² - 6y + 9)
= (x + 4)² - (y - 3)²
= (x + 4 - y + 3)(x + 4 + y - 3)
= (x - y + 7)(x + y + 1)
a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)
\(=\left(x-y\right)^3-z^3\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)
\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)
b: \(=x^2+8x+16-y^2+6y-9\)
=(x+4)^2-(y-3)^2
=(x+4+y-3)(x+4-y+3)
=(x+y+1)(x-y+7)