Phân tích các đa thức sau thành nhân tử:
\(f,x^2-6x+5\)
\(g,x^4+64\)
Phân tích các đa thức sau thành nhân tử:
\(f,x^2-6x+5\)
\(g,x^4+64\)
f) \(x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
g) \(x^4+64=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
\(x^2-6x+5\)
\(=\left(x^2-2.3x+3^2\right)-4\)
\(=\left(x-3\right)^2-2^2\)
\(=\left(x-3-2\right)\left(x-3+2\right)\)
\(=\left(x-5\right)\left(x-1\right)\)
Phân tích các đa thức sau thành nhân tử (tách một hạng tử thành nhiều hạng tử)
f) x^2-5x-14
i) x^2-7x+10
h) x^2-7x+12
g) x^2+6x+5
f)\(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)
i)\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)
h)\(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-4\right)\left(x-3\right)\)
g)\(x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)
f)\(x^2-5x-14=x^2-7x+2x-14\)
\(=\left(x+2\right)\left(x-7\right)\)
i)\(x^2-7x+10=x^2-5x-2x+10\)
\(=\left(x-2\right)\left(x-5\right)\)
h)\(x^2-7x+12=x^2-4x-3x+12\)
\(=\left(x-3\right)\left(x-4\right)\)
g)\(x^2+6x+5=x^2+x+5x+5\)
\(=\left(x+5\right)\left(x+1\right)\)
f) \(x^2-5x-14\)
\(=x^2-7x+2x-14\)
\(=\left(x^2-7x\right)+\left(2x-14\right)\)
\(=x\left(x-7\right)+2\left(x-7\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
i) \(x^2-7x+10\)
\(=x^2-5x-2x+10\)
\(=\left(x^2-5x\right)-\left(2x-10\right)\)
\(=x\left(x-5\right)-2\left(x-5\right)\)
\(=\left(x-2\right)\left(x-5\right)\)
h) \(x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=\left(x^2-3x\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
g) \(x^2+6x+5\)
\(=x^2+x+5x+5\)
\(=\left(x^2+x\right)+\left(5x+5\right)\)
\(=x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(x+5\right)\left(x+1\right)\)
phân tích các đa thức sau thành nhân tử:
2y ( x+2) -3x - 6
3 (x+4) -x^2 - 4x
2 (x+5) -x^2 -4x
x^2 + 6x -3x -18
a: \(2y\left(x+2\right)-3x-6\)
\(=2y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(2y-3\right)\)
b: \(3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(x+4\right)\left(3-x\right)\)
c: \(2\left(x+5\right)-x^2-4x\)
\(=2x+10-x^2-4x\)
\(=-x^2-2x+10\)
\(=-x^2-2x-1+11\)
\(=11-\left(x^2+2x+1\right)\)
\(=11-\left(x+1\right)^2\)
\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)
d: \(x^2+6x-3x-18\)
\(=\left(x^2+6x\right)-\left(3x+18\right)\)
\(=x\left(x+6\right)-3\left(x+6\right)\)
\(=\left(x+6\right)\left(x-3\right)\)
Phân tích các đa thức sau thành nhân tử:
b) x^2-4y^2+2x+4y
e) 6x^2-150y^2+60y-6
f) x^2(x+1)+x(x+2)-4(x+1)
g) x^35+x^34+x^33+...+x^2+x+1
Phân tích đa thức thành nhân tử
\(e)x^3-x^2+x+3\)
\(f)2x^3-35x-75\)
\(g)3x^3-4x^2+13x-4\)
\(h)6x^3+x^2+x+1\)
\(i)4x^3+6x^2+4x+1\)
Phân tích các đa thức sau thành nhân tử: a, 5(x-y)-y(x-y) b, x^2 -6x -y^2 =9
a: =(x-y)(5-y)
b: \(=x^2-6x+9-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(a,5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\\ b,x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\)
Phân tích đa thức thành nhân tử:
a)xy+3x-7y-21
b)2xy-15-6x-5y
c)2x^2y+2xy^2-2x-2y
Phân tích các đa thức sau thành nhân tử:
x(x+3)-5x(x-5)-5(x+3)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
a) xy+3x-7y-21=(xy+3x)-(7y+21)= x(y+3)-7(y+3)=(y+3)(x-7)
b)2xy-15-6x+5y=(2xy-6x)+(5y-15)=2x(y-3)+5(y-3)=(y-3)(2x+5)
c)2x^2y+2xy^2-2x-2y=2xy(x+y)-2(x+y)=2(x+y)(xy-1)
d) x(x+3)-5x(x-5)-5(x+3)=[x(x+3)-5(x+3)]-5x(x-5)=(x+3)(x-5)-5x(x-5)=(x-5)(x+3-5x)=(x-5)(3-4x)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích các đa thức sau thành nhân tử
a)2x^2 + 6x=
b) x^4 + 3x^3 + x +3=
c) 64- x^2 - y^2 + 2xy=
Rứt gọn bt
A= ( x+ 5) ( x+ 1)+ (x-2) (x^2+ 2xx +4)- (x^2+ x-2)
giúp mình nhanh với
\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)
a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)
A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1
2x^5 - 6x^4 - 2a^2 x^3 - 6ax^3. Phân tích đa thức sau thành nhân tử
2x^5-6x^4-2a^2x^3-6ax^3
=(2x^5-2a^2x^3)-(6x^4+6ax^3)
=2x^3(x^2-a^2)-6x^3(x+a)
=2x^3(x-a)(x+a)-6x^3(x+a)
=(x+a)(2x^4-2x^3a-6x^3)
=(x+a) 2x^3 (x-a-3)