Tứ giác ABCD có AB=AC. Gọi M,N,K lần lượt là trung điểm của AC,CD,BD.CM: tam giác MNK cân
giải giúp mình bài này nhé:
cho tứ giác ABCD không là hình thang và có AB=CD, AC cắt BD tại O. gọi M và N ần lượt là trung điểm của AD và BC. Đoạn thẳng MN lần lượt cắt các đoạn thẳng AC và BD tại I và K. Chứng minh tam giác OIK là tam giác cân
Bài 1 : Cho hình thang ABCD ( AB // CD ) E là trung điểm của AB
a, C/m tam giác EDC cân
b,Gọi I , K ,M lần lượt là trung điểm của BC , CD , DA . Tứ giác EIKM là hình gì ? vì sao
c , Tính diện tích của tam giác ABCD và tam giác EIKM biết EK = 4 , IM = 6
Bài 2. Cho hình bình hành ABCD gọi E , F lần lượt là trung điểm của AB , CD
a, TỨ giác DEBF là hình gì ? vì sao ?
b , C/m AC , BF , EF đồng quy
c , Gọi giao điểm của AC với DE và BF theo thứ tự là M ,N .C/m EMFN là hình bình hành
d, Tính diện tích của EMFN biết AC =a , BC = 4
Cho hình thang cân ABCD. Gọi I, H, K, E, M, N lần lượt là trung điểm của AB, BC, CD, DA, AC, BD. Chứng minh tứ giác IHKE, IMKN là hình thoi.
Xét ΔABD có
E là trung điểm của AD
I là trung điểm của AB
Do đó: EI là đường trung bình của ΔABD
Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBDC có
H là trung điểm của BC
K là trung điểm của CD
Do đó: HK là đường trung bình của ΔBDC
Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)
Xét ΔABC có
I là trung điểm của AB
H là trung điểm của BC
Do đó: IH là đường trung bình của ΔBAC
Suy ra: \(IH=\dfrac{AC}{2}\)
mà AC=BD
nên \(IH=\dfrac{BD}{2}\)
hay IH=HK
Xét tứ giác IEKH có
EI//KH
EI=KH
Do đó: IEKH là hình bình hành
mà IH=HK
nên IEKH là hình thoi
1) Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm cạnh AB, AC
a)Cm:Tứ giác MBNC là hình thang cân
b) biết AB= 4cm,AC=7cm,BC=8cm.Tính chu vi tứ giác BMNC
2) Cho tứ giác ABCD có AB=CD.Gọi M, N lần lượt là trung điểm cạnh AD, BC.Đường thẳng MN lần lượt cắt AB tại E và cắt CD tại F. Cm: góc AEM bằng góc CFN
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
cho tam giác ABC nhọn(AB<AC) gọi M,N và K lần lượt là trung điểm của AB,AC,BC.đường cao AH
chứng minh tứ giác MNKH là hình thang cân
\(\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb }\Delta ABC\\ \Rightarrow MN\text{//}BC\Rightarrow MN\text{//}HK\\ \Rightarrow MNKH\text{ là hthang}\)
\(\left\{{}\begin{matrix}AM=MB\\BK=KC\end{matrix}\right.\Rightarrow MK\text{ là đtb }\Delta ABC\\ \Rightarrow MK=\dfrac{1}{2}AC\)
Mà HN là trung tuyến ứng cạnh huyền AC nên \(HN=\dfrac{1}{2}AC\)
\(\Rightarrow MK=HN\\ \text{Vậy }MNKH\text{ là htc}\)
Cho tứ giác ABCD có AB=CD. Gọi M,N lần lượt là trung điểm của BC, AD. Gọi I,K lần lượt là trung điểm của AC, BD. Chứng minh rằng: MN là tia phân giác của \(\widehat{IMK}\)
Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD
Mà AB = CD (gt)
\(\Rightarrow KN=NI=IM=MK\)
\(\Rightarrow KNIM\)là hình thoi
Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)
Chúc bạn học tốt.
Cho tứ giác ABCD AB=CD. Gọi M,N lần lượt là trung điểm của AC và BD. MN cắt AB và CD lần lượt tại P và Q
1, Cm tam giác KPQ cân
2, Với điều kiện nào của ABCD thì MN song song vs BC
Cho tứ giác ABCD có AD=BC. Gọi AC cắt BD tại I. K và L lần lượt là tâm nội tiếp của tam giác AID và tam giác BIC. M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng MN chia đôi KL ?