x(x^2-x+1)-x^2(x-1)=3(x-2)
giải phương trình:
a) 2/x+1 - 1/x-3= 3x-11/x^2-2x-3
b) 3/x-2 +1/x=-2/x.(x-2)
c) x-3/x+3 - 2/x-3=3x+1/9-x^2
d) 2/x+1 - 1/x-2=3x-5/x^2-x-2
e) x-2/x+2 + 3/x-2=x^2-11/x^2-4
f) x+3/x+1 + x-2/x=2
g) x+5/x-5 - x-5/x+5=20/x^2-25
h) x+4/x+1 + x/x-1=2x^2/x^2-1
i) x+1/x-1 - 1/x+1=x^2+2/x^2-1
1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)
\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
a, (3x+2)2 - (3x-2)2 =5x+38 b, 3(x-2)2 +9(x-1) =3(x2+x-3)
c, (x+3)3 -(x-3)2 -(x-3)2 =6x+18 d, (x-1)3-x(x+1)2=5x(2-x)-11(x+2)
e, (x+1)(x2-x+1)-2x=x(x-1)(x+1) f, (x-2)3+(3x-1)(3x+1)=(x+1)3
a: =>9x^2+12x+4-9x^2+12x-4=5x+38
=>24x=5x+38
=>19x=38
=>x=2
e: =>x^3+1-2x=x^3-x
=>-2x+1=-x
=>-x=-1
=>x=1
f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1
=>12x-9=3x+1
=>9x=10
=>x=10/9
b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)
=>-3x+3=3x-9
=>-6x=-12
=>x=2
Bài 1:Tìm x,biết:
a,(x-2)(x+2)-(x-3)\(^2\)=9
b,(x-1)(x\(^2\)+1)-(x+1)(x\(^2\)-x+1)=x(2-x)
c,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
d,(x+1)\(^3\)-(x-1)\(^{^{ }3}\)-6(x-1)\(^2\)=-19
Bài 2:Viết về dạng bình phương hoặc dạng tích:
a,\(\dfrac{1}{27}\)x\(^3\)+x\(^2\)+9x+27
b,8u\(^3\)-60u\(^2\)v+150uv\(^2\)-125v\(^3\)
c,x^3+3x^2+3x+1+3(x^2+2x+1)y+3xy^2+3y^3+y^3
a. (x - 2)(x + 2) - (x - 3)2 = 9
<=> x2 - 22 - (x - 3)2 = 32
<=> x - 2 - (x - 3) = 3
<=> x - 2 - x + 3 = 3
<=> x - x = 3 - 3 + 2
<=> 0 = 2 (Vô lí)
Vậy nghiệm của PT là S = \(\varnothing\)
b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)
\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)
\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)
\(\Leftrightarrow-x=2\)
hay x=-2
Tìm x biết : 6(x+2)(x-3)-3(x-2)^2-3(x-1)(x+1)=1
3(x+2)^2+(2x-1)^2-7(x+3)(x-3)=36
(x-1)(x^2+x+1)+x(x+2)(2-x)=5
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
Tìm x biết : 6(x+2)(x-3)-3(x-2)^2-3(x-1)(x+1)=1
3(x+2)^2+(2x-1)^2-7(x+3)(x-3)=36
(x-1)(x^2+x+1)+x(x+2)(2-x)=5
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
Giải các phương trình sau:
1) 2 1 5 x 2) 2 1 5 x x
3) 3 1 2 x x 4) 3 2 2 x x
5) 2 1 5 x x 6) 3 2 x x
7) 2 3 2 1 x x 8) 2 1 4 1 0 x x 2
9) 2 5 4 3 1 1 2
3 2 3 1
x x
x x x x
10) 1 7 3 2
3 3 9
x x x
x x x
11) 5 296 2 1 3 1
16 4 4
x x
x x x
12)
2 4
1
2 1 2 1 2 1 2 1
x x
x x x x
13) 2 1 2 2
2 2
x
x x x x
14) 22 4
2 6 2 2 2 3
a) \(x^3 + 1 = (x + 1)(x^2 - x + 1)\)
\(x^9 + x^7 - 3x^2 - 3 = x^7(x^2 + 1) - 3(x^2 + 1) = (x^2 + 1)(x^7 - 3)\).
Điều kiện của x để giá trị của biểu thức Q xác định là \(x \neq -1, x^7 \neq 3, x \neq -3, x \neq 4\).
b) \(Q = \left[\frac{x^7 -3}{x^3 + 1}.\frac{(x - 1)(x + 1)(x^2 - x + 1)}{(x^7 - 3)(x^2 + 1)} + 1 - \frac{2(x + 6)}{x^2 + 1}\right].\frac{(2x + 1)^2}{(x + 3)(4 - x)}\)
\(= \left[\frac{x^7 - 3}{x^3 + 1}.\frac{(x - 1)(x^3 + 1)}{(x^7 - 3)(x^2 + 1)} + 1 - \frac{2(x + 6)}{x^2 + 1}\right].\frac{(2x + 1)^2}{(x + 3)(4 - x)}\)
Giải phương trình:
A) 1-x/x+1 +3 = 2x+3/x+1
B) (x+2)^2/2x-3 -1 = x^2-10/2x-3
C) 5x-2/2-2x + 2x-1/2 = 1 + x^2+x-3/x-1
D) 5-2x/3 - (x-1)(x+1)/1-3x = (x+2)(1-3x)/9x-3
E) x-3/x-2 + x-2/x-4 = -1
F) 1 + x/3-x = 5/(x+2)(3-x) + 2/x+2
G) x+1/x-1 - x-1/x+1 = 3x( 1 - x-1/x+1 )
H) 1-6x/x-2 + 9x-4/x+2 = x(3x-2)+1/x^2-4
I) 3x-1/x-1 - 2x+5/x+3 + 4/x^2+2x-3 = 1
\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4=2x+3\)
\(\Leftrightarrow0x=-1\)(vô nghiệm)
Vậy phương trình vô nghiệm.
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow2x+7=-10\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)
Trả lời:
a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)\(\left(đkxđ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow4+2x=2x+3\)
\(\Leftrightarrow2x-2x=3-4\)
\(\Leftrightarrow0x=-1\)(không thỏa mãn)
Vậy \(S=\varnothing\)
b, \(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\)\(\left(đkxđ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{\left(x+2\right)^2-\left(2x-3\right)}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow x^2+2x+7=x^2-10\)
\(\Leftrightarrow x^2+2x-x^2=-10-7\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(tm)
Vậy \(S=\left\{\frac{-17}{2}\right\}\)
c, \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)\(\left(đkxđ:x\ne1\right)\)
\(\Leftrightarrow\frac{2-5x}{2x-2}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)
\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)
\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)}+\frac{2\left(x^2+x-3\right)}{2\left(x-1\right)}\)
\(\Rightarrow2-5x+2x^2-3x+1=2x-2+2x^2+2x-6\)
\(\Leftrightarrow2x^2-8x+3=2x^2+4x-8\)
\(\Leftrightarrow2x^2-8x-2x^2-4x=-8-3\)
\(\Leftrightarrow-12x=-13\)
\(\Leftrightarrow x=\frac{13}{12}\)(tm)
Vậy \(S=\left\{\frac{13}{12}\right\}\)
1.giải phương trình :
1)1 + 2/x-1 + 1/x+3=x^2+2x-7/x^2+2x-3
2)x/x^2+5x+6=2/x^2+3x+2 (x=3)
3)1/x^2+9x+20 - 1/x^2+8x+12=x^2-2x-33/x^2+8x+15 (x=-5,7)
4)x+5/3x-6 - 1/2=2x-3/2x-4 (x=25/7)
5)x-1/x^3+1 + 2x+3/x^2-x+1=2x+4/x+1 - 2(x=0)
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)