Tìm x,y,z:biết:\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\)và \(x^2+y^2-z^2\)=585
1)\(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}\) và xyz=20
2)\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\) và \(^{x^2+y^2+z^2=585}\)
3) \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x+y+z=49
Tìm x, y, z biết:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\) và x2 + y2 - z2 = 585
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{47}=\dfrac{z^2}{9}\)
Áp dụng t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{25}=9\\\dfrac{y^2}{49}=9\\\dfrac{z^2}{9}=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=15\\x=-15\end{matrix}\right.\\\left[{}\begin{matrix}y=21\\y=-21\end{matrix}\right.\\\left[{}\begin{matrix}z=9\\z=-9\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
Ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{7}\right)^2=\left(\dfrac{z}{3}\right)^2\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Theo tính chất của dãy các tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49-9}=\dfrac{585}{65}=9\)
Vậy:
\(\left(\dfrac{x}{5}\right)^2=3^2\Rightarrow\dfrac{x}{5}=3\) hoặc \(\dfrac{x}{5}=-3\)
\(\left(\dfrac{y}{7}\right)^2=3^2\Rightarrow\dfrac{y}{7}=3\) hoặc \(\dfrac{y}{7}=-3\)
\(\left(\dfrac{z}{3}\right)^2=3^2\Rightarrow\dfrac{z}{3}=3\) hoặc \(\dfrac{z}{3}=-3\)
Do đó:
x =15 x = -15
y =21 hoặc y = -21
z = 9 z = -9
Vì \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)nên \(\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2\)
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
AD tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Lại có : \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=9\Rightarrow\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=3\)
\(\Rightarrow\frac{x}{5}=3\Leftrightarrow x=15\)
\(\frac{y}{7}=3\Leftrightarrow y=21\)
\(\frac{x}{3}=3\Leftrightarrow x=9\)
Vậy ...
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Tìm các số x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và x + z - y = -49
b) \(\dfrac{x}{3}=\dfrac{y}{-2};\dfrac{x}{6}=\dfrac{z}{7}\) và 3x - z + 2y = 3
Lm hết nha mọi ngừi ^^
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Do đó: x=-70; y=-135; z=-84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x+z-y}{10+12-15}=-\dfrac{49}{7}=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{-2}\\\dfrac{x}{6}=\dfrac{z}{7}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{7}=\dfrac{3x}{18}=\dfrac{2y}{-8}=\dfrac{3x-z+2y}{18-7-8}=\dfrac{3}{3}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.6=6\\y=1.\left(-4\right)=-4\\z=1.7=7\end{matrix}\right.\)
Cho 3 số dương x,y,z thỏa mãn \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\)và x2+y2-z2=585.Khi đó giá trị của x+y+z bằng bao nhiêu ?
Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=k\)
=> \(\left\{{}\begin{matrix}x=5k\\y=7k\\z=3k\end{matrix}\right.\)
Mà x2+y2-z2 = 585 => 25k2 + 49k2 - 9k2 = 65k2 => k2 = 9 => k = \(\pm\)3
Với k = 3 => \(\left\{{}\begin{matrix}x=15\\y=21\\z=9\end{matrix}\right.\) hay x+y+z = 45
Với k = -3 => \(\left\{{}\begin{matrix}x=-15\\y=-21\\x=-9\end{matrix}\right.\)hay x+y+z = -45
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
Tìm x,y,z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và x-y+z=-21
b)\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và \(x^2-2y^2+z^2=44\)
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)⇒\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\)
⇒x=8;y=12;z=20
Tìm x,y,z biết:
a, x : y : z = 10 : 3 : 4 và x + 2y - 3z = -20
b, \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và \(\dfrac{y}{5}\) = \(\dfrac{z}{4}\) và x - y + z = -49
c, \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\) =\(\dfrac{z}{4}\) và xy + \(z^2\)= 88
d, \(\dfrac{x}{5}\)= \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) và \(x^2\) + \(y^2\) + \(z^2\) = 415
Giải hộ mk nha
Tìm x,y biết :
6) 3x=4y và 2x + 3y = 7
7) \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\) và x-y+z=36
8) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\) và 3x-2y+2z = 24
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42